摘要
We present here a two-step method of classification and calculation for decay rates in the Standard Model. The first step is a phenomenological classification method, which is an extended and improved schematic experimental formula for decay width originally introduced by Chang. This schematic formula separates decays into seven classes. Furthermore, from it is derived a process-specific interaction energy m<sub>X</sub>. The second step is a numerical calculation method, which calculates this interaction energy m<sub>X</sub> numerically by minimization of action from the Lagrangian of the process, from which follows the decay width via the phenomenological formula. The Lagrangian is based on an extension of the Standard Model, the extended SU(4)-preon-model. A comparison of numerically calculated and observed decay widths for a large selection of decays shows a good agreement.
We present here a two-step method of classification and calculation for decay rates in the Standard Model. The first step is a phenomenological classification method, which is an extended and improved schematic experimental formula for decay width originally introduced by Chang. This schematic formula separates decays into seven classes. Furthermore, from it is derived a process-specific interaction energy m<sub>X</sub>. The second step is a numerical calculation method, which calculates this interaction energy m<sub>X</sub> numerically by minimization of action from the Lagrangian of the process, from which follows the decay width via the phenomenological formula. The Lagrangian is based on an extension of the Standard Model, the extended SU(4)-preon-model. A comparison of numerically calculated and observed decay widths for a large selection of decays shows a good agreement.
作者
Jan Helm
Jan Helm(Department of Electrical Engineering, Technical University, Berlin, Germany)