期刊文献+

Geometric Aspects of Quasi-Periodic Property of Dirichlet Functions 被引量:1

Geometric Aspects of Quasi-Periodic Property of Dirichlet Functions
在线阅读 下载PDF
导出
摘要 The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value taken by it at any point belonging to that line and a bounded domain Ω. He proved that the functions defined by ordinary Dirichlet series are quasi-periodic in their half plane of uniform convergence. We realized that the existence of the domain Ω is not necessary and that the quasi-periodicity is related to the denseness property of those functions which we have studied in a previous paper. Hence, the purpose of our research was to prove these two facts. We succeeded to fulfill this task and more. Namely, we dealt with the quasi-periodicity of general Dirichlet series by using geometric tools perfected by us in a series of previous projects. The concept has been applied to the whole complex plane (not only to the half plane of uniform convergence) for series which can be continued to meromorphic functions in that plane. The question arise: in what conditions such a continuation is possible? There are known examples of Dirichlet series which cannot be continued across the convergence line, yet there are no simple conditions under which such a continuation is possible. We succeeded to find a very natural one. The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value taken by it at any point belonging to that line and a bounded domain Ω. He proved that the functions defined by ordinary Dirichlet series are quasi-periodic in their half plane of uniform convergence. We realized that the existence of the domain Ω is not necessary and that the quasi-periodicity is related to the denseness property of those functions which we have studied in a previous paper. Hence, the purpose of our research was to prove these two facts. We succeeded to fulfill this task and more. Namely, we dealt with the quasi-periodicity of general Dirichlet series by using geometric tools perfected by us in a series of previous projects. The concept has been applied to the whole complex plane (not only to the half plane of uniform convergence) for series which can be continued to meromorphic functions in that plane. The question arise: in what conditions such a continuation is possible? There are known examples of Dirichlet series which cannot be continued across the convergence line, yet there are no simple conditions under which such a continuation is possible. We succeeded to find a very natural one.
出处 《Advances in Pure Mathematics》 2018年第8期699-710,共12页 理论数学进展(英文)
关键词 DIRICHLET FUNCTIONS ANALYTIC CONTINUATION Fundamental DOMAINS QUASI-PERIODIC FUNCTIONS Dirichlet Functions Analytic Continuation Fundamental Domains Quasi-periodic Functions
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部