摘要
                
                    The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value taken by it at any point belonging to that line and a bounded domain Ω. He proved that the functions defined by ordinary Dirichlet series are quasi-periodic in their half plane of uniform convergence. We realized that the existence of the domain Ω is not necessary and that the quasi-periodicity is related to the denseness property of those functions which we have studied in a previous paper. Hence, the purpose of our research was to prove these two facts. We succeeded to fulfill this task and more. Namely, we dealt with the quasi-periodicity of general Dirichlet series by using geometric tools perfected by us in a series of previous projects. The concept has been applied to the whole complex plane (not only to the half plane of uniform convergence) for series which can be continued to meromorphic functions in that plane. The question arise: in what conditions such a continuation is possible? There are known examples of Dirichlet series which cannot be continued across the convergence line, yet there are no simple conditions under which such a continuation is possible. We succeeded to find a very natural one.
                
                The concept of quasi-periodic property of a function has been introduced by Harald Bohr in 1921 and it roughly means that the function comes (quasi)-periodically as close as we want on every vertical line to the value taken by it at any point belonging to that line and a bounded domain Ω. He proved that the functions defined by ordinary Dirichlet series are quasi-periodic in their half plane of uniform convergence. We realized that the existence of the domain Ω is not necessary and that the quasi-periodicity is related to the denseness property of those functions which we have studied in a previous paper. Hence, the purpose of our research was to prove these two facts. We succeeded to fulfill this task and more. Namely, we dealt with the quasi-periodicity of general Dirichlet series by using geometric tools perfected by us in a series of previous projects. The concept has been applied to the whole complex plane (not only to the half plane of uniform convergence) for series which can be continued to meromorphic functions in that plane. The question arise: in what conditions such a continuation is possible? There are known examples of Dirichlet series which cannot be continued across the convergence line, yet there are no simple conditions under which such a continuation is possible. We succeeded to find a very natural one.