期刊文献+

Distinction of an Assortment of Deep Brain Stimulation Parameter Configurations for Treating Parkinson’s Disease Using Machine Learning with Quantification of Tremor Response through a Conformal Wearable and Wireless Inertial Sensor

Distinction of an Assortment of Deep Brain Stimulation Parameter Configurations for Treating Parkinson’s Disease Using Machine Learning with Quantification of Tremor Response through a Conformal Wearable and Wireless Inertial Sensor
在线阅读 下载PDF
导出
摘要 Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Imperative for the deep brain stimulation parameter optimization process is the quantification of response feedback. As a significant improvement to traditional ordinal scale techniques is the advent of wearable and wireless systems. Recently conformal wearable and wireless systems with a profile on the order of a bandage have been developed. Previous research endeavors have successfully differentiated between deep brain stimulation “On” and “Off” status through quantification using wearable and wireless inertial sensor systems. However, the opportunity exists to further evolve to an objectively quantified response to an assortment of parameter configurations, such as the variation of amplitude, for the deep brain stimulation system. Multiple deep brain stimulation amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of amplitude settings is acquired through a conformal wearable and wireless inertial sensor system and consolidated using Python software automation to a feature set amenable for machine learning. Five machine learning algorithms are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, logistic regression, and random forest. The performance of these machine learning algorithms is established based on the classification accuracy to distinguish between the deep brain stimulation amplitude settings and the time to develop the machine learning model. The support vector machine achieves the greatest classification accuracy, which is the primary performance parameter, and <span style="font-family:Verdana;">K-nearest neighbors achieves considerable classification accuracy with minimal time to develop the machine learning model.</span> Deep brain stimulation offers an advanced means of treating Parkinson’s disease in a patient specific context. However, a considerable challenge is the process of ascertaining an optimal parameter configuration. Imperative for the deep brain stimulation parameter optimization process is the quantification of response feedback. As a significant improvement to traditional ordinal scale techniques is the advent of wearable and wireless systems. Recently conformal wearable and wireless systems with a profile on the order of a bandage have been developed. Previous research endeavors have successfully differentiated between deep brain stimulation “On” and “Off” status through quantification using wearable and wireless inertial sensor systems. However, the opportunity exists to further evolve to an objectively quantified response to an assortment of parameter configurations, such as the variation of amplitude, for the deep brain stimulation system. Multiple deep brain stimulation amplitude settings are considered inclusive of “Off” status as a baseline, 1.0 mA, 2.5 mA, and 4.0 mA. The quantified response of this assortment of amplitude settings is acquired through a conformal wearable and wireless inertial sensor system and consolidated using Python software automation to a feature set amenable for machine learning. Five machine learning algorithms are evaluated: J48 decision tree, K-nearest neighbors, support vector machine, logistic regression, and random forest. The performance of these machine learning algorithms is established based on the classification accuracy to distinguish between the deep brain stimulation amplitude settings and the time to develop the machine learning model. The support vector machine achieves the greatest classification accuracy, which is the primary performance parameter, and <span style="font-family:Verdana;">K-nearest neighbors achieves considerable classification accuracy with minimal time to develop the machine learning model.</span>
作者 Robert LeMoyne Timothy Mastroianni Donald Whiting Nestor Tomycz Robert LeMoyne;Timothy Mastroianni;Donald Whiting;Nestor Tomycz(Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA;Cognition Engineering, Pittsburgh, PA, USA;Department of Neurosurgery, AHN Neuroscience Institute, Pittsburgh, PA, USA;AHN Department of Neurosurgery, Pittsburgh, PA, USA)
出处 《Advances in Parkinson's Disease》 2020年第3期21-39,共19页 帕金森(英文)
关键词 Parkinson’s Disease Deep Brain Stimulation Wearable and Wireless Systems Conformal Wearable Machine Learning Inertial Sensor ACCELEROMETER Wireless Accelerometer Hand Tremor Cloud Computing Network Centric Therapy Python Parkinson’s Disease Deep Brain Stimulation Wearable and Wireless Systems Conformal Wearable Machine Learning Inertial Sensor Accelerometer Wireless Accelerometer Hand Tremor Cloud Computing Network Centric Therapy Python
  • 相关文献

参考文献4

二级参考文献3

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部