期刊文献+

Analysis and Design of Derivative Free Filters against Derivative Based Filter on the Simulated Model of a Three Phase Induction Motor

Analysis and Design of Derivative Free Filters against Derivative Based Filter on the Simulated Model of a Three Phase Induction Motor
在线阅读 下载PDF
导出
摘要 Recursive state estimation methods have aroused substantial attraction among many researchers and in particular, the drives research fraternity has shown increased interest in recent years. State estimators that surrogate direct measurements play an integral part in the operation of modern a.c. drives. Their robustness and accuracy are very much decisive for the performance of the drive. In this paper, a comparative analysis of the three nonlinear filtering schemes to estimate the states of a three phase induction motor on the simulated model is presented. The efficacy of Ensemble Kalman Filter (EnKF) against the traditional Jacobian based Filter or Extended Kalman Filter (EKF) and almost forbidden, hitherto least-attempted Unscented Kalman Filter (UKF) is very much exemplified. Theoretical aspects and comparative simulation results are investigated comprehensively with respect to three different scenarios viz., step changes in load torque, speed reversal, and low speed operation. Also, “Monte Carlo Simulation” runs have been exploited very extensively to show the superior practical usefulness of EnKF, by which the minimum mean square error (MMSE), which is often used as the performance index, ostensibly gets mitigated very radically by the proposed approach. The results throw light on alleviating the intrinsic intricacies encountered in EKF in parlance with the observer theory. Recursive state estimation methods have aroused substantial attraction among many researchers and in particular, the drives research fraternity has shown increased interest in recent years. State estimators that surrogate direct measurements play an integral part in the operation of modern a.c. drives. Their robustness and accuracy are very much decisive for the performance of the drive. In this paper, a comparative analysis of the three nonlinear filtering schemes to estimate the states of a three phase induction motor on the simulated model is presented. The efficacy of Ensemble Kalman Filter (EnKF) against the traditional Jacobian based Filter or Extended Kalman Filter (EKF) and almost forbidden, hitherto least-attempted Unscented Kalman Filter (UKF) is very much exemplified. Theoretical aspects and comparative simulation results are investigated comprehensively with respect to three different scenarios viz., step changes in load torque, speed reversal, and low speed operation. Also, “Monte Carlo Simulation” runs have been exploited very extensively to show the superior practical usefulness of EnKF, by which the minimum mean square error (MMSE), which is often used as the performance index, ostensibly gets mitigated very radically by the proposed approach. The results throw light on alleviating the intrinsic intricacies encountered in EKF in parlance with the observer theory.
机构地区 不详
出处 《Energy and Power Engineering》 2010年第2期78-89,共12页 能源与动力工程(英文)
关键词 Ensemble KALMAN FILTER [EnKF] Extended KALMAN FILTER [EKF] Three Phase Induction Motor [IM] State Estimation Unscented KALMAN FILTER [UKF] Ensemble Kalman Filter [EnKF] Extended Kalman Filter [EKF] Three Phase Induction Motor [IM] State Estimation Unscented Kalman Filter [UKF]
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部