期刊文献+

丢番图方程(75n)<sup>x</sup>+ (308n)<sup>y</sup>= (317n)<sup>z</sup>

On the Diophantine Equation (75n)<sup>x</sup>+ (308n)<sup>y</sup>= (317n)<sup>z</sup>
在线阅读 下载PDF
导出
摘要 设a,b,c是两两互素的正整数且a2+b2=c2。Jesmanowicz猜想:对于任意给定的正整数n,方程(an)x+(bn)y=(cn)z只有正整数解(x,y,z)=(2,2,2)。本文利用数论中的一些方法证明了:对任意的正整数n,方程(75n)x+ (308n)y= (317n)z只有正整数解(x,y,z)=(2,2,2),即当(a,b,c)=(75,308,317)时,Jesmanowicz猜想成立。 Let a,b,c be a primitive Pythagogrean triples such that a2+b2=c2. Jesmanowicz conjectured that, for any positive integer n, the Diophantine equation (an)x+(bn)y=(cn)z has only positive integer solution (x,y,z)=(2,2,2). In this paper, by using some methods of number theory,we prove that, for any positive integer n, the Diophantine equation (75n)x+ (308n)y= (317n)z has only positive integer solution (x,y,z)=(2,2,2), that is the Jesmanowicz conjecture is true, when (a,b,c)=(75,308,317).
出处 《理论数学》 2023年第11期3358-3364,共7页 Pure Mathematics
  • 相关文献

参考文献1

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部