期刊文献+

基于AI技术的卷烟零售终端交易识别系统研究

Research on AI-Based Transaction Recognition System for Cigarette Retail Terminals
在线阅读 下载PDF
导出
摘要 在全球数字化浪潮下,各行业数字化转型成为必然趋势,烟草企业为加快高质量发展与现代化建设,亟需优化零售终端客户服务策略,赋能零售终端数字化转型。鉴于当前卷烟零售终端存在数字化水平低、交易行为缺乏数字化记录等问题,本文提出一套融合计算机视觉、语音识别与深度学习技术的智能解决方案,并设计开发基于AI技术的卷烟零售终端交易识别系统。该系统实现交易行为智能识别,能快速完成卷烟商品识别与销售数据采集,支持多种支付方式结算,实时更新库存并预警补货,深度剖析销售及消费行为数据,助力零售户提升经营效益、维护市场秩序,实现从商品识别到交易记录的全流程自动化。其为烟草零售终端智能化提供关键技术支撑,显著提升交易效率与数据准确性,为消费行为分析及精准营销筑牢基础。In the context of the global digital wave, the digital transformation of various industries has become an inevitable trend. In order to accelerate high-quality development and modernization, tobacco enterprises urgently need to optimize their retail terminal customer service strategies and empower the digital transformation of retail terminals. Given the current issues in cigarette retail terminals, such as low levels of digitalization and the lack of digital records of transaction behaviors, this paper proposes an intelligent solution that integrates computer vision, speech recognition, and deep learning technologies. It also designs and develops a cigarette retail terminal transaction recognition system based on AI technology. The system achieves intelligent recognition of transaction behaviors, can quickly complete cigarette product identification and sales data collection, supports various payment methods for settlement, updates inventory in real time and issues restocking alerts, and conducts in-depth analysis of sales and consumer behavior data. It helps retailers improve their business efficiency, maintain market order, and achieve full automation from product identification to transaction recording. It provides key technical support for the intelligent transformation of tobacco retail terminals, significantly enhances transaction efficiency and data accuracy, and lays a solid foundation for consumer behavior analysis and precise marketing.
出处 《管理科学与工程》 2025年第3期679-684,共6页 Management Science and Engineering
基金 贵州省烟草公司安顺市公司科技项目“卷烟零售终端交易和陈列AI识别关键技术研究”(编号:2024ASXM01)。
  • 相关文献

参考文献9

二级参考文献38

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部