期刊文献+

基于深度学习的图像去雾研究综述

A Review of Research on Image Defogging Based on Deep Learning
在线阅读 下载PDF
导出
摘要 恶劣天气环境下拍摄的图像会受到雾或霾的影响,从而导致图像饱和度过低模糊、以及颜色灰白等负面效果,这不仅会使图像中的重要信息丢失,还会对后续计算机视觉任务(如目标检测、图像分割、人员再识别)的研究造成负面影响。为了解决上述问题,文章首先对图像去雾的发展历程进行分析和梳理,接下来重点论述了深度学习在图像去雾领域的研究进展,主要包含有监督去雾、无监督去雾和半监督去雾技术,并对各自的代表性算法进行深入对比分析。最后,介绍了图像去雾领域主流的数据集和评估指标。Images captured in harsh weather environments are often affected by fog or haze, which can lead to negative effects such as low saturation, blurring, and grayish-white colors. This not only results in the loss of important information in the image, but also has a negative impact on subsequent computer vision tasks such as object detection, image segmentation, and personnel re-identification. This article first provides a comprehensive analysis and sorting of image defogging and then reviews the research progress of deep learning in the field of image defogging, mainly including supervised defogging, unsupervised defogging, and semi-supervised defogging. We compared and analyzed representative algorithms among these methods. Finally, the commonly used datasets and evaluation metrics for image defogging were introduced.
出处 《图像与信号处理》 2025年第1期21-33,共13页 Journal of Image and Signal Processing
基金 北京市教育委员会出版学新兴交叉学科平台建设–数字喷墨印刷技术及多功能轮转胶印机关键技术研发平台(项目编号:04190123001/003) 北京市数字教育研究重点课题(BDEC2022619027) 北京市高等教育学会2023年立项面上课题(课题编号:MS2023168) 北京印刷学院校级科研项目(20190122019、Ec202303、Ea202301、E6202405) 北京印刷学院学科建设和研究生教育专项(21090122012、21090323009) 北京市自然科学基金资助项目(1212010)。
  • 相关文献

参考文献2

二级参考文献38

  • 1师洪波,郭红梅,岳婷,钱力,黄定余,常志军.基于分布式大数据技术的科学计量模块化分析平台构建研究[J].数据分析与知识发现,2020,4(2):231-238. 被引量:3
  • 2吴宁,石丹阳.新时代中国特色社会主义健康中国[J].社会科学家,2022(12):30-37. 被引量:18
  • 3Khellaf A, Beghdadi A, Dupoiset H. Entropic contrast enhance- ment[ J]. IEEE Transactions on Medical Imaging, 1991,10(4) : 589 - 592.
  • 4Kim Y L. Contrast enhancement using brightness preserving bi- histogram equalization [ J]. IEEE Transactions on Consumer Electronics, 1997,43( 1 ) : 1 - 8.
  • 5CaseUes V, Lisani J L, Morel J M, Sapiro G. Shape preserving local histogram modification [ J ]. IEEE Transactions on Image Processing, 1999,8 (2) : 220 - 230.
  • 6Wang C, Ye Z. Brightness preserving histogram equalization with maximum entropy: A variational perspective [ J ]. IEEE Transactions Consumer Electronics, 2005,51 (4) : 1326 - 1334.
  • 7Sheet D, Garud H, Suyeer A, et al. Brightness preserving dy- namic fuzzy histogram equalization [ J]. IEEE Transactions on Consumer Electronics, 2010,56(4) : 2475 - 2480.
  • 8Arici T, Dikbas S, Altunbasak Y. A histogram modification framework and its application for image contrast enhancement [ J ]. IEEE Transactions on Image Processing, 2009, 18 (9) : 1921 - 1935.
  • 9Lee C, Lee C, Lee Y Y, et al. Power-constrained conlrast en- hancement for emissive displays based on histogram equaliza- tion[J]. IEEE Transactions on Image Processing, 2012,21 (1): 80 - 93.
  • 10Bassiou N, Kotropoulos C. Color image histogram equalization by absolute discounting back-off[ J]. Computer Vision and Im- age Understanding, 2007,107(1-2) : 108 - 122.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部