期刊文献+

基于DeepSeek和DeepLearning融合策略的工程保障实体关系抽取

Engineering Support Entity Relation Extraction Based on DeepSeek and DeepLearning Fusion Strategy
在线阅读 下载PDF
导出
摘要 工程保障实体关系抽取对于开展智能化辅助决策具有重要意义。本文在领域专家的指导下设计了工程保障实体关系,并本地化部署DeepSeek,经过TCL、CoT多轮Prompt学习,抽取了工程保障实体关系;对该领域的数据集进行人工标注,开展基于四种模型的关系抽取实验,结果表明,RoBERTa-BiGRU-ATT模型的实体关系抽取效果最好,精确率、召回率和F1值分别达到了0.8903、0.8879、0.8885。本文研究表明,基于DeepSeek和DeepLearning融合策略对抽取实体关系,是一种更高效便捷的方法,对于构建领域知识图谱和智能问答具有重要意义。 Engineering support entity relation extraction is of great significance for intelligent assistant decision-making. In this paper, under the guidance of domain experts, the engineering support entity relationship is designed, and DeepSeek is deployed locally. After TCL and CoT rounds of Prompt learning, the engineering support entity relationship is extracted. The data sets in this field are manually labeled, and relationship extraction experiments based on four models are carried out. The results show that the RoBERTa-BiGRU-ATT model has the best entity relationship extraction effect, and the accuracy rate, recall rate and F1 value are 0.8903,0.8879 and 0.8885, respectively. The research in this paper shows that the fusion strategy based on DeepSeek and DeepLearning is a more efficient and convenient method for extracting entity relationships, which is of great significance for constructing domain knowledge graphs and intelligent question answering.
出处 《数据挖掘》 2025年第3期242-253,共12页 Hans Journal of Data Mining
  • 相关文献

参考文献7

二级参考文献47

  • 1Yuanyuan Zhang,Yu Chen,Shengkang Yu,Xiaoqin Gu,Mengqiong Song,Yu Peng,Jianxia Chen,Qi Liu.Bi-GRU Relation Extraction Model Based on Keywords Attention[J].Data Intelligence,2022,4(3):552-572. 被引量:2
  • 2车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:121
  • 3董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 4Kambhatla N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations [C]//Proc of the ACL 2004 on Interactive Poster and Demonstration Sessions. Stroudsburg, PA: Association for Computational Linguistics, 2004:1-4.
  • 5Zhou G D, Su J, Zhang J, et al. Exploring various knowledge in relation extraction [C]//Proc of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA.. Association for Computational Linguistics, 2005:427-434.
  • 6Jiang J, Zhai C X. A systematic exploration of the feature space for relation extraction [C]//Proc of Human Language Technologies: The Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT'07). Stroudsburg, PA: Association for Computational Linguistics, 2007:113-120.
  • 7Chan Y S, Roth D. Exploiting background knowledge for relation extraction [C]//Proc of the 23rd Int Conf on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2010:152-160.
  • 8Sun A, Grishman R, Sekine S. Semi-supervised relation extraction with large-scale word clustering [C]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2011, 1: 521-529.
  • 9Chen Z, Ji H. Language specific issue and feature exploration in Chinese event extraction [C] //Proc of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers. Stroudsburg, PA~ Association for Computational Linguistics, 2009: 209- 212.
  • 10Li P F, Zhu Q M, Zhou G D. Using compositional semantics and discourse consistency to improve Chinese trigger identification [J]. Information Processing & Management, 2014, 50(2): 399-415.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部