期刊文献+

基于深度学习的游客餐饮评论情感分析——以秦皇岛市为例 被引量:1

Emotional Analysis of Tourists’ Catering Comments Based on Deep Learning—Taking Qinhuangdao as an Example
在线阅读 下载PDF
导出
摘要 游客餐饮体验直接影响整个城市的旅游竞争力,对旅游业的影响不容小觑。游客餐饮评论体现了游客对旅行目的地餐饮体验的真实感受,具有很高的研究价值。本文对秦皇岛市游客餐饮评论进行情感分析,并基于负面评论探寻影响游客餐饮体验的因素。分别采用Word2vec和BERT-wwm-ext预训练语言模型作为词嵌入层,将词向量化结果输入TextCNN、GRU、BiLSTM深度学习模型进行对比分析。训练结果表明:BERT-wwm-ext-BiLSTM模型准确率达96.89%,模型效果优于其他对比模型。最后对该模型分类结果的负面评价进行主题分析,确定负面评价主要涉及服务、价格、环境、菜品以及味道五个方面。相关部门应及时做出整改,提高游客餐饮体验,增强秦皇岛旅游核心竞争力。 Tourists’ catering experience directly affects the tourism competitiveness of the whole city, and its impact on tourism should not be underestimated. Tourists’ catering comments reflect tourists’ real feelings about the catering experience of their travel destinations, which has high research value. This paper makes an emotional analysis of tourists’ catering comments in Qinhuangdao, and explores the factors that affect tourists’ catering experience based on negative comments. Word2vec and BERT-wwm-ext pre-training language models are used as word embedding layers respectively, and the results of word vectorization are input into TextCNN, GRU and BiLSTM deep learning models for comparative analysis. The training results show that the accuracy of BERT-wwm-ext-BiLSTM model is 96.89%, and the effect of the model is better than other comparative models. Finally, the negative evaluation of the classification results of this model is analyzed, and it is determined that the negative evaluation mainly involves five aspects: service, price, environment, dishes and taste. Relevant departments should make timely rectification to improve the catering experience of tourists and enhance the core competitiveness of Qinhuangdao tourism.
出处 《数据挖掘》 2024年第3期149-161,共13页 Hans Journal of Data Mining
  • 相关文献

参考文献7

二级参考文献59

  • 1郭庆,贾郭军.基于tree LSTM的旅游评论情感分析方法研究[J].计算机应用研究,2020,37(S02):63-65. 被引量:7
  • 2王冬,甘恒,黄文峰,黄政龙,陈中举.基于MLP模型的影评情感分析研究[J].中国科技论文在线精品论文,2021(2):208-211. 被引量:2
  • 3李斌,郭剑毅.一种带约束的最小离差平方和系统聚类法及应用[J].计算机应用,2005,25(1):45-48. 被引量:10
  • 4Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1.
  • 5Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79 86.
  • 6Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre classification and domain transfer for information filtering[A]. In: Fabio Crestani, Mark Girolami, and Cornelis J. van Rijsbergen, editors, Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research, Glasgow, UK. Springer Verlag, Heidelberg, DE.
  • 7Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa Wilson. A corpus study of evaluative and speculative language[A]. In: Proceedings of the 2nd ACL SIGdial Workshop on Discourse and Dialogue, 2001.
  • 8Alina Andreevskaia and Sabine Bergler. Mining Word-Net For a Fuzzy Sentiment: Sentiment Tag Extraction From WordNet Glosses[A].In: Proc. EACL-06, Trento, Italy, 2006.
  • 9Alistair Kennedy and Diana Inkpen. Sentiment Classification of Movie Reviews Using Contextual Valence Shifters[J]. Computational Intelligence, 2006,22 (2) 110-125.
  • 10P.D. Turney and M.L. Littman. Unsupervised learning of semantic orientation from a hundred-billion-word corpus[D]. Technical Report ERB-1094, National Research Council Canada, Institute for Information Technology, 2002.

共引文献156

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部