摘要
                
                    本文研究了满足A-调和方程的微分形式高阶可积性问题。文中利用微分形式的Hölder不等式及同仑算子与格林算子的相关结果首先证明了1<q<n条件下作用于满足a-调和方程微分形式的复合算子t°d°g的局部高阶可积性,然后在此基础上进一步给出了q≥n条件下的高阶可积性。
                
                In this paper, we have studied higher order integrability for differential forms satisfying A-harmonic equation. Based on Hölder inequality of differential forms and some results of Ho-motopy operator and Green’s operator, we first establish local higher order integrability for compo-sition operator T°d°G applied to differential forms satisfying A-harmonic equation with the con-dition 1.
    
    
    
    
                出处
                
                    《应用数学进展》
                        
                        
                    
                        2023年第11期4798-4805,共8页
                    
                
                    Advances in Applied Mathematics