摘要
针对一类配置卷积度量的双卷积空间,利用Kozul计算方法和微分几何的理论研究了非退化曲面的卷积曲率形式,得到其刻画方程。在此基础上,证明了卷积函数为一次函数对应的双卷积空间平坦。
For a class of double Warped Product spaces with a Riemannian metric, the paper gives the curvature representation of the nondegenerate surface of double Warped Product space by using the knowledge of Kozul formula and the theory of differential geometry. On this basis, it is proved that the nondegenerate surface of double Warped Product space is flat if and only if Warped function is the first order function.
出处
《应用数学进展》
2022年第3期1209-1213,共5页
Advances in Applied Mathematics