期刊文献+

Lasso方法在基于行为决定因素的宫颈癌早期检测中的应用 被引量:2

Application of Lasso Procedure for Behavior Determinant Based Cervical Cancer Early Detection
在线阅读 下载PDF
导出
摘要 宫颈癌是世界上严重危害女性健康的恶性肿瘤之一,所幸的是,这种疾病是可以预防的。预防或早期发现是一个具有挑战性的难题,本文利用Lasso方法、Adaptive Lasso方法、Elastic net方法和Adaptive Elastic net方法通过宫颈癌行为风险数据集建立Logistic模型,以帮助进行宫颈癌早期检测和筛查。从实验结果看,Lasso方法表现更优。 Cervical cancer is one of the malignant tumors that seriously endanger women’s health in the world. Fortunately, this disease can be prevented. Prevention or early detection is a challenging problem. In this paper, in order to help early detection and screening of cervical cancer, we consider the Lasso, adaptive Lasso, elastic net and adaptive elastic net to establish a logistic model through the behavioral risk data set of cervical cancer. From the experimental results, Lasso procedure has good performance.
出处 《应用数学进展》 2022年第2期781-789,共9页 Advances in Applied Mathematics
  • 相关文献

参考文献4

二级参考文献44

  • 1王临虹,邱琇,郑睿敏,狄江丽.我国宫颈癌流行病学状况及防治策略的回顾与展望[J].中国妇幼卫生杂志,2010,1(3):146-149. 被引量:76
  • 2Frank I E, Friedman J H. A statistical view of some chemometrics regression tools[J]. Technometrics, 1993, 35(2): 109-135.
  • 3Fu W J. Penalized regressions: the bridge versus the Lasso[J]. Journal of Computational and Graphical Statistics, 1988, 7(3): 397-416.
  • 4Schwarz G. Estimating the dimension of a model[J]. Annals of Statistics, 1978, 6(7): 461-464.
  • 5Mallows C L. Some comments on C'p[J]. Technometrics, 1973, 15(4): 661-675.
  • 6Tibshirani R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society (Series B), 1996, 58(1): 267-288.
  • 7Efron B, Hastie T, Johnstone I, et al. Least angle regression[J]. The Annals of Statistics, 2004, 32(2): 407-451.
  • 8Knight K, Fu W J. Asymptotics for Lasso-type estimators[J]. The Annals of Statistics, 2000, 28(5): 1356- 1378.
  • 9Fan J Q, Li R Z. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360.
  • 10Zou H. The adaptive Lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476): 1418-1429.

共引文献535

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部