期刊文献+

基于Doc2vec的微博评论情感倾向研究

Research on Emotional Tendency of Microblog Comments Based on Doc2vec
在线阅读 下载PDF
导出
摘要 该文针对疫苗接种的相关微博评论进行情感倾向分析,首先利用基于神经网络的Doc2vec模型训练文本向量,继而使用支持向量机(SVM)、随机森林(RF)、逻辑回归(LR)三种机器学习的算法完成情感分类任务,且分别讨论了三种算法在四种不同的Doc2vec模型设定方案下的分类表现。其中Distributed Memory version of Paragraph Vector (PV-DM)算法训练的文本向量中,RF表现最优,在方案一与方案二上其F1分数值均为最高,分别为87.24%、87.50%。基于Distributed Bag of Words version of Paragraph Vector (PV-DBOW)算法训练的文本向量中,SVM表现最优,在方案三与方案四上其F1分数值达到最高,分别为84.11%、83.91%。 Firstly, Doc2vec model based on neural network was used to train the text vector, and then three machine learning algorithms including Support Vector Machine (SVM), Random Forest (RF) and Logistic Regression (LR) were used to complete the emotion classification task. The classification performance of the three algorithms under four different Doc2vec model setting schemes is discussed respectively. Among the text vectors trained by the Distributed Memory version of Paragraph Vector (PV-DM) algorithm, RF performs best, and its F1 score is the highest in plan 1 and plan 2, which are 87.24% and 87.50%, respectively. Among the text vectors trained by the Distributed Bag of Words Version of Paragraph Vector (PV-DBOW) algorithm, SVM has the best performance, and its F1 score is the highest in scheme 3 and scheme 4, which are 84.11% and 83.91% respectively.
作者 李荟珍
出处 《应用数学进展》 2022年第1期269-277,共9页 Advances in Applied Mathematics
  • 相关文献

参考文献6

二级参考文献29

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:137
  • 3徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:108
  • 4B.Pang,L.Lee.Seeing stars:Exploiting class relationships for sentiment categorization with respect to rating scales[C]Proceedings of the ACL,2005:115-124.
  • 5Y.Bengio,R.Ducharme,P.Vincent,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3:1137-1155.
  • 6Collobert R,Weston J.A unified architecture for natural language processing:Deep neural networks with multitask learning[C]//Proceedings of the 25th international conference on Machine learning.ACM,2008:160-167.
  • 7Mnih A,Hinton G E.A Scalable Hierarchical Distributed Language Model[C]//Proceedings of NIPS.2008::1081-1088.
  • 8Mikolov T,Karafiát M,Burget L,et al.Recurrent neural network based language model[C]//Proceedingsof INTERSPEECH.2010:1045-1048.
  • 9Mikolov T,Kombrink S,Burget L,et al.Extensions of recurrent neural network language model[C]//Proceedings of Acoustics,Speech and Signal Processing(ICASSP),2011 IEEE International Conference on.IEEE,2011:5528-5531.
  • 10Kombrink S,Mikolov T,Karafiát M,et al.Recurrent Neural Network Based Language Modeling in Meeting Recognition[C]//Proceedings of INTERSPEECH.2011:2877-2880.

共引文献338

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部