期刊文献+

不同注意条件下大数与小数的加工差异 被引量:23

THE INFLUENCE OF ATTENTION ON THE EFFECTS OF NUMBER MAGNITUDE IN NUMBER COMPARISON TASK
在线阅读 下载PDF
导出
摘要 考察在注意 (注视点 )与非注意 (非注视点 )条件下数字加工的距离效应和符号效应。采用小数 (1~ 4 )和大数 (6~ 9)的中文与阿拉伯数字为材料 ,以判断数字是否大于 5为任务。实验结果表明 :⑴在注意条件下 ,大小数都出现了距离效应 ;而在非注意条件下 ,只有小数出现距离效应 ;⑵在注意条件下 ,大小数都没有出现符号效应 ;而在非注意条件下 ,只有小数出现符号效应 ,中文数字绩效显著好于阿拉伯数字。 A number comparison task was performed to examine the role of attention in number processing.Two main number comparison effects, number distance effect and number notation effect, were investigated in two attention conditions: attended (fixation) or unattended (3 left or right beside the fixation).Different number magnitude (large: 6~9 & small: 1~4) and number notations (Chinese & Arabic) were used. The task is to compare the numbers with 5. The number distance effect and number notation effect were investigated using ANOVA analysis. Both the error rates and RT data showed that, for number distance effect, both large numbers and small numbers had very clear distance effect in attended condition; however, only small numbers had distinct distance effect in unattended condition. For number notation effect, both small numbers and large numbers had no notation effect in attended condition; however, only small numbers showed a significant notation effect (the performance of Chinese numbers were significant better than Arabic numbers) in unattended condition.
作者 刘超 傅小兰
出处 《心理学报》 CSSCI CSCD 北大核心 2004年第3期307-314,共8页 Acta Psychologica Sinica
基金 国家自然科学基金项目 ( 3 0 2 70 466) 中国科技部 973项目 ( 2 0 0 2CB3 12 10 3 ) 中国科学院心理研究所创新重点项目 ( 0 3 0 2 0 3 7)
关键词 注意 数字加工 数字距离效应 数字符号效应 attention, number processing, number distance effect, number notation effect.
  • 相关文献

参考文献27

  • 1Kaufman E L, Lord M W, Reese T, et al. The discrimination of visual number. American Journal of Psychology, 1949, 62:498~525
  • 2Dehaene S, Dehaene-Lambertz G, Cohen L. Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 1998, 21(8): 355~361
  • 3Trick L M, Pylyshyn Z W. Why are small and large numbers enumerated differently-a limited-capacity preattentive stage in vision. Psychological Review, 1994, 101(1): 80~102
  • 4Ullman S. Visual routines. Cognition, 1984, 18(1-3): 97-159
  • 5Treisman A M, Gelade G. Feature-integration theory of attention. Cognitive Psychology, 1980, 12(1): 97~136
  • 6Trick L M, Pylyshyn Z W. What enumeration studies can show us about spatial attention-evidence for limited capacity preattentive processing. Journal of Experimental Psychology: Human Perception and Performance, 1993, 19(2): 331~351
  • 7Sathian K, Simon T J, Peterson S, et al. Neural evidence linking visual object enumeration and attention. Journal of Cognitive Neuroscience, 1999, 11(1): 36~51
  • 8Brysbaert M. Arabic number reading - on the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 1995, 124(4): 434~452
  • 9Moyer R S, Landauer T K. Time required for judgements of numerical inequality. Nature, 1967, 215(5109): 1519
  • 10Dehaene S. The psychophysics of numerical comparison-a reexamination of apparently incompatible data. Perception and Psychophysics, 1989, 45(6): 557~566

二级参考文献35

  • 1Wynn IC Psychological foundations of number: numerical competence in human infants. Trends in Cognitive Sciences, 1998, 2: 296-303.
  • 2Dehaene S. Cerebral bases of number processing and calculation. In: M S Gazzaniga ed. The New Cognitive Neurosciences. Cambridge, Massachusetts. London, England. The MIT Press, 2000. 1013-1022.
  • 3Dehaene S, Akhavein R. Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1995, 21(2): 314-326.
  • 4Fuson K C. Childrens Counting and Concepts of Number. New York: Springer-Verlag, 1988.
  • 5Dehaene S. Varieties of numerical abilities. Cognition, 1992, 44( 1-2): 1-42.
  • 6McCloskey M. Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition, 1992, 44:107-157.
  • 7Dehaene S, Spelke E, Pine1 P. et al. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science, 1999, 284: 970-974.
  • 8Dehaene S, Bossini S, Giraux E The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 1993, 122:371-396.
  • 9Groen G J, Parkman J M. A chronometric analysis of simple addition. Psychological Review, 1972, 79:329-343.
  • 10Gallistel C R, Gelman R. Preverbal and verbal counting and computation. Cognition, 1992, 44:43-74.

共引文献16

同被引文献432

引证文献23

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部