期刊文献+

静态球对称时空中Dirac方程分离变量及退耦 被引量:1

Separation and decoupling of Dirac equation in a static spherically symmetric geometry
在线阅读 下载PDF
导出
摘要 将一般静态球对称背景时空下的Dirac方程分离变量,得到退耦的径向方程和角向方程.从结果来看,不同的球对称时空其视界函数只影响径向方程,而不影响角向方程,这为进一步研究具有不同视界函数的静态球对称时空中Dirac粒子的行为提供了依据. Dirac equation in a static spherically symmetric system is separated and decoupled. The results show that the horizon function does not affect the angular decoupled equation but affects the radial decoupled equation. In consequence, the discussion about Dirac particles′ behavior in this geometry is available.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2004年第3期347-349,共3页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(10275008).
关键词 静态球对称时空 DIRAC方程 分离变量 退耦 径向方程 static spherically symmetric geometry null-tetrad frame Dirac equation
  • 相关文献

参考文献11

  • 1TEUKOLSKY S A. Perturbations of a rotating black hole.I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations [J]. Astrophys J, 1973, 185: 635-648.
  • 2PAGE D N. Dirac equation around a charged, rotating black hole [J]. Phys Rev: D, 1976, D14: 1509-1510.
  • 3DAMOUR T, RUFFINI R. Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism [J]. Phys Rev: D, 1976, D14:332-334.
  • 4MUKHOPADHYAY B, CHAKRABARTI S K. Semi-analytical solution of Dirac equation in Schwarzschild geometry [J]. Class Quan Grav, 1999, 16(10):3165-3181.
  • 5MUKHOPADHYAY B, CHAKRABARTI S K. Solution of Dirac equation around a spinning black hole [J]. Nucl Phys: B, 2000, 582:627-645.
  • 6NEWMAN E, PENROSE R. An approach to gravitational radiation by a method of spin coefficients [J]. J Math Phys, 1962, 3: 566-578.
  • 7CHANDRASEKHAR S. The Mathematical Theory of Black Holes [M]. New York: Oxford University Press, 1983.
  • 8CHANDRASEKHAR S. The solution of Dirac′s equation in Kerr geometry [J]. Proc R Soc Lond: A, 1976, 349: 571-575.
  • 9刘辽 许殿彦.Dirac粒子的Hawking蒸发[J].物理学报,1980,29(12):1617-1624.
  • 10赵峥 桂元星 刘辽.在Kerr—Newman时空中Dirac粒子的Hawking蒸发[J].天体物理学报,1981,1(2):141-148.

共引文献19

同被引文献11

  • 1曾谨言.量子力学[M].北京:科学出版社,2001..
  • 2刘辽 许殿彦.Dirac粒子的Hawking蒸发[J].物理学报,1980,29(12):1617-1624.
  • 3赵峥 桂元星 刘辽.在Kerr—Newman时空中Dirac粒子的Hawking蒸发[J].天体物理学报,1981,1(2):141-148.
  • 4许殿彦.Kerr—Newman时空中荷电Dirac粒子的Hawking辐射[J].物理学报,1983,32(2):225-237.
  • 5MUKHOPADHYAY B,CHAKRABARTI S K.Semi-analytical solution of Dirac equation inSchwarzschild geometry[J].Class Quant Grav,1999,16:3165-3181.
  • 6MUKHOPADHYAY B,CHAKRABARTI S K.Solution of Dirac equation around a spinning blackhole[J].Nucl Phys B,2000,582:627-645.
  • 7CHAKRABARTI S K,MUKHOPADHYAY B.Dirac equation in Kerr geometry and itssolution[J].Nuovo Cimento B,2000,115:885-896.
  • 8CHAKRABARTI S K,MUKHOPADHYAY B.Scattering of Dirac Waves off Kerr Black Holes[J].MonNot Roy Astron Soc,2000,317:979-984.
  • 9S.K.Charkrabarti.On mass-dependent spheroidal harmonics of spin one-half[J].Proc R SocLond A,1984,391:27-38.
  • 10CHANDRASEKHAR S.The Mathematical Theory of Black Holes[M].New York:Oxford UniversityPress,1983.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部