期刊文献+

基于图的频繁闭项集挖掘算法 被引量:7

Graph-Based Algorithm for Mining Frequent Closed Itemsets
在线阅读 下载PDF
导出
摘要 为了提高数据挖掘效率,提出了一种基于图的频繁闭项集挖掘算法GFCG(graph basedfrequentcloseditemsetgeneration).该算法采用位矢量技术构造有向图,表示项与项之间的频繁关系,并在有向图的基础上递归产生频繁闭项集,从而只需扫描数据库2次,不产生候选集;引入扩展频繁项集的概念,大大减小了检查频繁项集是否闭的搜索空间.用1个真实数据库和2个合成数据库对GFCG进行了测试,并与A close和CLOSET算法的结果进行了比较,结果表明,该算法具有良好的速度和可伸缩性性能. To raise the efficiency of data mining, a graph-based algorithm for mining frequent closed itemsets, called GFCG (graph-based frequent closed itemset generation) was proposed. In this algorithm, the bit vector technique is used to construct a directed graph to represent the frequent relationship between items, and frequent closed itemsets are generated recursively from this graph. As a result, the GFCG scans the database for only two times, and does not generate candidate sets. Furthermore, the concept of an expanded frequent itemset is introduced to greatly decrease the searching range for adjusting whether a frequent itemset is closed or not. In addition, this algorithm was tested by using one actual and two synthetical databases. The testing result shows that compared with the A-close and CLOSET algorithms, the proposed algorithm has good speed and scale-up properties.
出处 《西南交通大学学报》 EI CSCD 北大核心 2004年第3期385-389,共5页 Journal of Southwest Jiaotong University
基金 国家中西药管理局项目(2000 J P 54)
关键词 数据库 数据挖掘 频繁闭集 位向量 database graph data mining frequent closed itemset bit vector
  • 相关文献

参考文献8

  • 1Agrawl R,Srikant R.Fast algorithm for mining association rules[A].1994 Int Conf Very Large Data Base (VLDB'94)[C].Santiage,Chile,1994.487-499.
  • 2Han J,Dong G,Yin Y.Efficient mining of partial periodic patterns in time series database[A].1999 Int Conf Data Engineering (ICDE 99)[C].Sydney:IEEE Press,1999.106-115.
  • 3Mannila H,Toivonen H,Verkamo A I.Discovery of frequent episodes in event sequences[J].Data Mining and Knowledge Discovery,1997(1):259-289.
  • 4Li L,Jin F.A new algorithm for mining frequent pattern[J].Journal of Southwest Jiaotong University (English Version),2002,10(1):10-21.
  • 5Pasquier N,Bastide Y,Taouil R,et al.Discovering frequent closed itemsets for association rules[A].The 7th International Conference on Database Theory[C].Jerusalem,Israel:Springer,1999.398-416.
  • 6Pei J,Han J,Mao R.Closet:An efficient algorithm for mining frequent closed itemsets[A].ACM-SIGMOD Int.Workshop on Data Mining and Knowledge Discovery(DMKD 00)[C].Dallas,TX,2000.21-30.
  • 7李天瑞,徐扬,潘无名.φ频繁闭项目挖掘问题及其算法[J].西南交通大学学报,2001,36(3):225-228. 被引量:3
  • 8Mannila H.Toivonen H,Verkamo A I.Efficient algorithms for discovering association rules[A].AAAI94 Workshop Knowledge Discovery in Database (KDD94)[C].Seattle:AAAI Press,1994.181-192.

二级参考文献5

  • 1Li T R,MLFL 2000,2000年,124页
  • 2Han J,Proc ACMSIGMOD Conference on Management Data,2000年,1页
  • 3Pei J,Proc of 2000 ACMSIGMOD Int Workshop on Data Mining and Knowledge Discovery,2000年,11页
  • 4Han J,IEEE Transactionson Knowledgeand Data Engineering,1999年,11卷,5期,1页
  • 5Park J,SIGMOD'95,1995年,175页

共引文献2

同被引文献52

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部