期刊文献+

IKONOS图象的城市土地利用信息提取方法研究(英文)

Inferring Urban Land-use in the Fringe Area of Nanjing City from IKONOS Imagery
在线阅读 下载PDF
导出
摘要  目前,高分辨率遥感图象正愈来愈多地应用于土地与水资源的监测和管理,其中,IKONOS图象数据因其具有较高的空间分辨率和人机交互的解译效果,在省市土地利用信息获取及在城市研究中更具有广阔的应用前景.以南京幅的IKONOS图象数据为基础,以城乡接合部的不同试验区为对象,着重讨论了高分辨率遥感图象城市土地利用信息的提取与分类方法 .其主要思想是先应用常用的多光谱分类算法对试验区的土地利用现状进行初始的类别划分 ,然后采用MajorityFiltering技术获取图象的上下文信息 ,并给你根据地物的形状特征和空间关系对初始分类结果进行校正与调整 .研究结果表明 ,当初始的类别划分能满足一定精度时 。 Nowadays, new sets of satellite data with higher spatial resolutions (1~5 m) are continuously used in various land land and water resources monitoring and management aplications all over the world. One of such kinds is IKONOS images which offer a considerable potential for the derivation of information on urban land_use categories with a great visual perception. The present study mainly meant for proposing a method for urban land_use mapping in the fringe area, based on the following approaches such as the standard (per_pixel) multi_spectral classification algorithm to identify the principal land_cover parcels present on the observed scene and, the extraction of contextual information by using ‘majority filtering’ approach to infer land_use from the morphological properties of these parcels and the spatial relationships existing in_between them. During this methodological approach, it was implicated that the initial classification with sufficient accuracy allowed land_use to be inferred from the structural properties and relations. This study was an attempt to apply the proposed approaches by using IKONOS multispectral image with a nominal spatial resolution of 4m for Nanjing city and its fringe area.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期362-369,共8页 Journal of Nanjing University(Natural Science)
关键词 IKONOS图象 城市土地利用 信息提取 MAJORITY Filtering技术 上下文信息 遥感图象 IKONOS image, majority filtering approach, contextual information, urban land_use, classification
  • 相关文献

参考文献13

  • 1赵书河,冯学智,都金康.中巴资源一号卫星水体信息提取方法研究[J].南京大学学报(自然科学版),2003,39(1):106-112. 被引量:32
  • 2Barnsley M J, Barr S L. Inferring urban land use from satellite sensor images using kernel based spatial reclassification. Photogrammetric Engineering and Remote Sensing, 1996, 62(6) : 949-958.
  • 3Lobo A. Image segmentation and discriminant analysis for the identification of land cover units in ecology.IEEE Transact. Geosciences and Remote Sensing, 1997,35:1 136-1 145.
  • 4Oliver M A, Webster R, Slocum K, et al. Filtering spot imagery by kriging analysis. International Journal Remote Sensing, 2000, 21(4): 723-735.
  • 5Lewis H G, Brown M. Generalized confusion matrix for assessing area estimates from remotely sensed data.International Journal of Remote Sensing, 2001, 22 (16) ; 3 223 - 3 237.
  • 6Gamba P, Dell Acqua R. Increased accuracy multiband urban classification using a neuro-fuzzy classifier.International Journal of Remote Sensing, 2003,24( 2 ) : 827 - 834.
  • 7Coppin P R, Bauer M E. Digital change detection in forest ecosystem with remote sensing imagery.Remote Sensing Review, 1996, 13(4): 207-234.
  • 8Bastin L. Comparison of Fuzzy c-means classification, linear mixture modeling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing, 1997,17(9) .3 629-3 648.
  • 9Harris P M, Ventura S J. The integration of geographic with remotely sensed imagery to improve classification in an urban area. Photogrammetric Engineering and Remote Sensing, 1995, 61(5): 993 -998.
  • 10Paola J D, Sehowengerdt R A. A detailed comparison of back propagation neural network and maximum likelihood classifiers for urban land use classification. 1EEE Transact Geosciences Remote Sensing, 1995,33: 981-996.

二级参考文献22

  • 1Lawrence R L, Wright A. Rule-based classification systems using classification and regression tree (CART) analysis. Photogrammetric Engineering and Remote Sensing, 2001,67 ( 10 ) : 1 137- 1 142.
  • 2Kontoes C, Wilkinson G G, Burrill A, et al. An experimental system for the integration of GIS data in knowledge-based analysis for remote sensing of agriculture. International Journal of Geographic Information System, 1993 ,7(3) :247-262.
  • 3Yang X, Lo C P. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Geographic Information System, 2002 , 23(9) :1 775-1 798.
  • 4Iio Y, Omatu S. Category classification method using a self-organizing neural network. International Journal of Remote Sensing, 1997,18(4) : 829-845.
  • 5Food J G M, Arora M K. An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 1997,18(4) :799-810.
  • 6Bartolucci L A, Robison B F, Silva L F. Field measurements of the spectral response of nature waters.Photogrammeric Engineering and Remote Sensing, 1977,XLIII (5) :595-598.
  • 7Work E A, Gilmer D S. Utilization of satellite data for inventorying prairie ponds and lakes. Photogrammetric Engineering and Remote Sensing, 1976,XLII(5) :685-694.
  • 8Haralick R M, Wang S, Shapiro L G, et al. Extraction of drainage networks by using the consistent labeling technique. Remote Sensing of Environment, 1985,18:163-175.
  • 9Perrott T, Harper J, Hill P, et al. The analysis of landsat MSS data for characterizing sediment dispersal in the beaufort sea. Proceedings of 8th Canadian Symposium on Remote Sensing, 1983:283-291.
  • 10Horwitz H M, Nalepka R F, Hyde P D, et al. Estimating the proportions of objects within a single resolution dement of a multispectral scanner. Proceedings of 7th International Symposium on Remote Sensing of Environment, 1971:1 307- 1 330.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部