期刊文献+

天线方向图综合中的本征激励方法 被引量:2

The eigen-driven analysis method in antenna pattern synthesis
在线阅读 下载PDF
导出
摘要 给出矩量法分析天线阵列时本征激励模式的不同定义.使用单元间无耦合的理想阵列来逼近有耦合的实际阵列.可以把理想阵列单元的电流分布经过等效转化之后得到的系数去激励有耦合的阵列,可在有互耦的阵列上综合出与理想阵列一致的方向图.因为在优化过程中减少了精确的电磁场分析而大大缩减了考虑耦合的实际阵列方向图综合时间.最后给出算例验证了笔者思路的正确性. The novel definition of the eigen-driven mode is given in antenna array analysis by the Moment Method. The practical array with mutual coupling between elements is approximated with the ideal one without mutual coupling. The excitation coefficients derived from the current distribution of ideal array elements are used to excite the array with mutual coupling, to produce the same radiation pattern as that of the ideal array. The process of pattern synthesis of a practical array is shortened because of the reduced electromagnetic analysis. Some examples are illustrated to prove the conclusion.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2004年第2期243-247,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(69971017)
关键词 天线方向图 本征激励 矩量法 互耦阵列 理想阵列 天线阵列 MoM the eigen-driven array with mutual coupling ideal array pattern synthesis
  • 相关文献

参考文献6

二级参考文献6

  • 1[2]J. H. Richmond. Radiation and Scattering by Thin-Wire Structures in the Complex Frequency Domain. NASA CR-2396, Washington: National Aeronautic and Space Administration, 1974.
  • 2[3]Daniel S., Eric Michielssen. Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans. on AP, 1997, 45(3): 343~353.
  • 3[5]M. Kijima, Y. Yamada. Determining excitation coefficients of dual-frequency shaped beam linear array antenna for mobile base station. Proc. IEEE Antennas and Propagation Society Symp., London: Ontario, 1991, 932~935.
  • 4[6]H. J. Orchard, R. S. Elliott, G. J. Stern. Optimizing the synthesis of shaped beam antenna patterns. Proc. Inst. Elect. Eng., Pt. H, 1985, 132(1): 63~67.
  • 5张志军,电波科学学报,1997年,4卷,362页
  • 6马云辉.基于遗传算法的唯相位控制方向图零点生成[J].微波学报,2001,17(2):41-46. 被引量:24

共引文献11

同被引文献15

  • 1Balanis C A.Antenna Theory:Analysis and Design.second edition.New York:John Wiley and Sons,Inc.,1997:309-337.
  • 2Vescovo R.Constrained and unconstrained synthesis of array factor for circular arrays.IEEE Trans.on AP,1995,43(12):1405-1410.
  • 3Dennis J E.Nonlinear least squares.In:Jacobs,D.(Ed.):State of the Art in Numerical Analysis.New York:Academic Press,1977:269-312.
  • 4Coleman T F and Li Y.On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds[J].Mathematical Programming,1994,67(2):189-224.
  • 5Dandekar K R,Ling H,and Xu G H.Experimental study of mutual coupling compensation in smart antenna applications.IEEE Trans.on Wireless Communications,2002,1(3):480-487.
  • 6Hui H T,Chan K Y,and Yung K N.Compensating for the mutual coupling effect in a normal-mode helical antenna array for adaptive nulling.IEEE Trans.on Vehicular Technology,2003,52(4):743-751.
  • 7Janaswamy R.Effect of element mutual coupling on the capacity of fixed length linear arrays.IEEE Antenna and Wirless Propagation Letters,2002,1:157-159
  • 8Miguel .ngel Garcia-Fern6ndez, David Carsenat, and Cyril Decroze. Antenna radiation pattern measurements in reverberation chamber using plane wave decomposition [ J ]. IEEE Trans. Antennas Propag,2013,61 (10) :5000 - 5007.
  • 9Ngo Thi Huong, Le Mai Ngoc Quynh Trang, Nguyen Quoc Dinh, Naobumi Miehishita and Yoshihide Yamada. Asymmetrical radiation pattern synthesis of a linear array antenna by a least mean square method [ C ]. International Conference on Advanced Technologies for Communications, 20t4:559 - 562.
  • 10MIGUEL G, DAVID C, CYRIL D. Antenna gain and radiation pattern measurements in reverberation chamber using doppler effect [ J ]. IEEE Trans. Antennas Propag. , 2014,62(10) :5389 - 5394.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部