期刊文献+

多尺度辛格式求解复杂介质波传问题 被引量:3

Multiresolution Symplectic Scheme for Wave Propagation in Complex Media
在线阅读 下载PDF
导出
摘要  在哈密顿体系中引入小波分析,利用辛格式和紧支正交小波对波动方程的时、空间变量进行联合离散近似,构造了多尺度辛格式———MSS(MultiresolutionSymplecticScheme)· 将地震波传播问题放在小波域哈密顿体系下的多尺度辛几何空间中进行分析,利用小波基与辛格式的特性,有效改善了计算效率。 A fast adaptive symplectic algorithm named multiresolution symplectic scheme (MSS) was first presented to solve the problem of the wave propagation in complex media, using the symplectic scheme and Daubechies' compactly supported orthogonal wavelet transform to respectively discretise the time and space dimension of wave equation. The problem was solved in multiresolution symplectic geometry space under the conservative Hamiltonian system rather than the traditional Lagrange system. Due to the fascinating properties of the wavelets and symplectic scheme, MSS is a promising method because of little computational burden, robustness and reality of long_time simulation.
出处 《应用数学和力学》 EI CSCD 北大核心 2004年第5期523-528,共6页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(19872037)
关键词 小波变换 多尺度 辛算法 波传问题 wavelet transform multiresolution symplectic wave propagation
  • 相关文献

参考文献10

  • 1马坚伟,杨慧珠,朱亚平.多尺度有限差分法模拟复杂介质波传问题[J].物理学报,2001,50(8):1415-1420. 被引量:13
  • 2马坚伟,徐新生,杨慧珠,钟万勰.平面粘性流体扰动与哈密顿体系[J].应用力学学报,2001,18(4):82-86. 被引量:7
  • 3XU Xin-sheng, ZHONG Wan-xie, ZHANG Hong-wu. The Saint-Venant problem and principle in elasticity[ J ] . Int J Solids Structures, 1997,34(22): 2815-2827.
  • 4Hirono I, Lui W W, Yokoyama K. Time-domain simulation of electromagnetic field using a symplectic integrator[ J]. IEEE Trans Microwave and Guided Wave Lett, 1997,7(9 ) :79-281.
  • 5Beylkin G. On the representation of operators in bases of Compactly supported wavelets[ J]. SIAM J Numer Anal, 1992,29(6): 1716-1740.
  • 6MA Jian-wei, ZHU Ya-ping, YANG Hui-zhu. Multiscale-combined seismic waveform inversion using orthogonal wavelet transform[ J]. Electron Lett ,2001,37(4) :261-262.
  • 7Dahmen W. Wavelet methods for PDEs-some recent developments [ J]. J Comput Appl Math, 2001,128(1/2): 133-185.
  • 8Holmstrom M. Solving hyperbolic PDEs usinginterpolating wavelets [J]. SIAM J Sci Comput,1999,21(2): 405-420.
  • 9Vasilyev O, Bowman C. Second-generation wavelet collocation method for the solution of PDEs[ J ].J Comput Phys,2000,165(2): 660-693.
  • 10Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations [ J ]. J Comput Phys ,2000,157(2): 473-499.

二级参考文献3

共引文献17

同被引文献21

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部