期刊文献+

预回复对固溶-T652处理超高强铝合金挤压材组织与性能的影响 被引量:6

Effect of pre-recovery treatment on microstructure and properties of ultra high strength aluminum alloy extrusion treated by solid solution–T652 treatment
在线阅读 下载PDF
导出
摘要 研究预回复对固溶-T652处理超高强铝合金Al-12.5Zn-3.6Mg-1.2Cu-0.2Zr-0.06Sr挤压材组织与性能的影响。结果表明:合金在固溶-T652处理前预回复处理((250℃,24 h)+(300℃,6 h)+(350℃,6 h)+(400℃,6 h))能明显提高合金的位错密度,显著细化合金晶粒(平均晶粒尺寸从11.14μm下降到5.25μm),降低晶界平均角度(从17.81°下降到12.57°),提高低角度晶界所占比例(由66.2%提高到76.4%),但硬度和强度略有下降。预回复处理能显著改善合金的抗晶间腐蚀性能,最大晶间腐蚀深度由247.7?m降为138.0?m。定量分析结果表明:合金强度的降低可归因于时效沉淀强化效果的降低;抗腐蚀性能的提高可归因于低角度晶界比例的提高和晶界析出相的粗化。 The effect of pre-recovery treatment on microstructure and properties of Al-12.5Zn-3.6Mg-1.2Cu- 0.2Zr-0.06Sr aluminum alloy extrusion treated by solid solution –T652 treatment was studied. The results show that the pre-recovery treatment ((250℃, 24 h)+(300℃, 6 h)+(350℃, 6 h)+(400℃, 6 h)) can improve the dislocation density of the alloy significantly, refine the grain size (from 11.14 to 5.25 μm), reduce the average angle grain boundaries (from 17.81° to 12.57°) and increase the percentage of low angle grain boundaries (from 66.2% to 76.4%), but reduce the hardness and tensile strength slightly. Pre-recovery treatment enhances inter-granular corrosion performance, the maximum corrosion depth decreases from 247.7μm to 138.0μm. Quantitative analysis results show that the decrease of the alloy strength can be attributed to the decline of aging precipitation strengthening. The promotion of corrosion resistance can be due to the improvement of the proportion of low angle grain boundary and the coarsening of precipitates.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2015年第11期3019-3025,共7页 The Chinese Journal of Nonferrous Metals
基金 江苏省工业科技支撑计划项目(BE2008118) 江苏大学优秀青年学术骨干培育专项基金资助项目(1211110001) 江苏省高校研究生科研创新计划项目(CXLX110563) 江苏高校优势学科建设工程项目
关键词 超高强 铝合金 预回复 挤压材 显微组织 腐蚀性能 ultra high strength aluminum alloy pre-recovery extrusion microstructure corrosion performance
  • 相关文献

参考文献9

  • 1宋丰轩,张新明,刘胜胆,谈琦,李东锋.Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time[J].Transactions of Nonferrous Metals Society of China,2014,24(7):2258-2265. 被引量:15
  • 2Marcello Cabibbo.Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys[J]. Materials Science & Engineering A . 2013
  • 3P. Luo,D.T. McDonald,W. Xu,S. Palanisamy,M.S. Dargusch,K. Xia.A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing[J]. Scripta Materialia . 2012 (10)
  • 4Y. Xu,J.C. Wang,S.J. Guo,X.T. Li,G.X. Xue.Effects of water-restricted panel on the casting process of high strength aluminum alloy ingots[J]. Journal of Materials Processing Tech. . 2010 (1)
  • 5R.T. Shuey,F. Barlat,M.E. Karabin,D.J. Chakrabarti.Experimental and Analytical Investigations on Plane Strain Toughness for 7085 Aluminum Alloy[J]. Metallurgical and Materials Transactions A . 2009 (2)
  • 6Y.H. Zhao,X.Z. Liao,Z. Jin,R.Z. Valiev,Y.T. Zhu.Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing[J]. Acta Materialia . 2004 (15)
  • 7Manabu Nakai,Takehiko Eto.New aspect of development of high strength aluminum alloys for aerospace applications[J]. Materials Science & Engineering A . 2000 (1)
  • 8Ola Jensrud,Ketill Pedersen.Cold forging of high strength aluminum alloys and the development of new thermomechanical processing[J]. Journal of Materials Processing Tech. . 1998
  • 9Vojtech,D.Challenges for research and development of new aluminum alloys. Metalurgija . 2010

二级参考文献19

  • 1REFEDIOS K H. Aluminium structures used in aerospace-Status and prospects [J]. Material Science Forum, 1997, 242:1 1-42.
  • 2WILLIAMS J C, STARKE E A Jr. Progress in structural materials for aerospace systems [J]. Acta Materialia, 2003, 51 (19): 5775-5799.
  • 3WLOKA J, HACK T, VIRTANEN S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys [J]. Corrosion Science, 2007, 49(3): 1437-1449.
  • 4CINA B, GAN R. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking: USA, 3856584 [P]. 1974.
  • 5ASM International. ASM handbook: Heat treating [M]. Volume 4. Metals Park, Ohio: American Society for Metals, 1991.
  • 6YOU Jiang-hai, LIU Sheng-dan, ZHANG Xin-ming, ZHANG Xiao-yan. Influence of quench transfer time on microstructure and mechanical properties of 7055 aluminum alloy [J]. Journal of Central South University, 2008, 15(2): 153-158.
  • 7PENG G S, CHEN K H, CHEN S Y, FANG H C. Influence of repetitious-RRA treatment on the strength and SCC resistance of A1 Zn Mg-Cu alloy [J]. Materials Science and Engineering A, 2011 528(12): 4014-4018.
  • 8ASTM G34-01. Standard test method for exfoliation corrosion susceptibility in 2xxx and 7xxx series aluminum alloys (EXCO test) [S].
  • 9MARLAUD T, MALKI B, DESCHAMPS A, BAROUX B. Electrochemical aspects of exfoliation corrosion of aluminium alloys The effects of heat treatment [J]. Corrosion Science, 2011, 53(4): 1394- 1400.
  • 10GODARD D, ARCHAMBAULT P, AEBY-GAUTIER E, LAPASSET G. Precipitation sequences during quenching of the AA 7010 alloy [J]. Acta Materialia, 2002, 50(9): 2319-2329.

共引文献21

同被引文献75

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部