期刊文献+

锂离子电池正极材料Li_2MnO_3的显微组织与电化学性能 被引量:3

Microstructure and electrochemical properties of Li_2MnO_3 as cathode material for lithium-ion battery
在线阅读 下载PDF
导出
摘要 以MnO2和LiOH·H2O为原料,采用固相法分别在750和900℃温度下焙烧得到Li2MnO3正极材料,并研究Li2MnO3正极材料晶体缺陷结构和相变对电化学容量的影响。通过X射线衍射(XRD)和电子衍射(SAED)进行晶体结构分析,采用扫描电镜(SEM)和透射电镜(TEM)观察了材料形貌,并对材料进行充放电测试和微分容量分析。结果表明:在750℃下合成的Li2MnO3具有类球形结构,晶体中出现大量的层错;电化学活化后获得的139.3m A·h/g放电容量和纳米片状特征与晶体结构中存在较高的层错密度有关;在900℃下合成的Li2MnO3晶体结构完整,但电化学过程中难于活化,即使100次循环后,Li2MnO3的超晶格结构依然保持完整;在电化学循环过程中,Li2MnO3会由层状结构逐渐向尖晶石结构转变;随着循环次数增加,电池容量主要来自尖晶石的电化学容量,其余部分来自Li2MnO3的逐渐活化。 Influence of stacking fault and spinel transformation on the discharge capacity of Li2MnO3 cathode materials were studied. Li2MnO3 cathode materials were synthesized using Mn O2 and Li OH·H2O as raw material by solid state reaction at the temperature of 750 and 900 ℃. Crystal structures of prepared Li2MnO3 were studied by X-ray diffraction(XRD) and electron beam diffraction(SAED). The microstructures of materials were observed by scanning electron microscopy(SEM) and transmission electron microscopy(TEM), and electrochemical properties were studied by charge-discharge test and differential capacity analysis. The results show that the Li2MnO3 sintered at 750 ℃ has sphere structure, which contains lots of stacking fault. The first discharge capacity of materials(139.3 m A·h/g) may be related to nano-plates and high stacking fault density. The sample sintered at 900 ℃ has good crystallinity, however, it is difficult to be activated. The superlattice structure of Li2MnO3 remains intact even after 100 cycles. Analysis results also suggest that Li2MnO3 gradually transforms to spinel during the electrochemical cycling. With increasing number of cycles, most of the increasing capacity is caused by the electrochemical activity of the spinel, and part of which comes from the progressively activation of Li2MnO3.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2015年第3期705-713,共9页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金联合资助项目(U1202272) 国家自然科学基金资助项目(51464025)
关键词 LI2MNO3 堆垛层错 超晶格 电化学性能 Li2MnO3 stacking fault superlattice electrochemical property
  • 相关文献

参考文献16

  • 1Alastair D. Robertson,Peter G. Bruce.Mechanism of Electrochemical Activity in Li2MnO3. Chemistry of Materials . 2003
  • 2J.-H. Kim,Y.-K. Sun.Electrochemical performance of Li[Li x Ni (1?3 x )/2 Mn (1+ x )/2 ]O 2 cathode materials synthesized by a sol–gel method[J]. Journal of Power Sources . 2003
  • 3M.H Rossouw,D.C Liles,MM Thackeray,W.I.F David,S Hull.Alpha manganese dioxide for lithium batteries: A structural and electrochemical study. Materials Research Bulletin . 1992
  • 4Rossouw, M.H.,Thackeray, M.M.Lithium manganese oxides from Li 2 MnO 3 for rechargeable lithium battery applications. Materials Research Bulletin . 1991
  • 5Thackeray, Michael M.,Kang, Sun-Ho,Johnson, Christopher S.,Vaughey, John T.,Benedek, Roy,Hackney, S.A.Li 2 MnO 3 -stabilized LiMO 2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials . 2007
  • 6Christopher S. Johnson,Naichao Li,Christina Lefief,John T. Vaughey,Michael M. Thackeray.Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 ? x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chemistry of Materials . 2008
  • 7Y. S. Meng,G. Ceder,C. P. Grey,W.-S. Yoon,M. Jiang,J. Bréger,Y. Shao-Horn.Cation Ordering in Layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 ≤ x ≤ 1/2) Compounds. Chemistry of Materials . 2005
  • 8Lingyan Yu,Weihua Qiu,Fang Lian,Jiayuan Huang,Xiaoli Kang.Understanding the phenomenon of increasing capacity of layered 0.65Li[Li 1/3 Mn 2/3 ]O 2 ·0.35Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2[J]. Journal of Alloys and Compounds . 2008 (1)
  • 9Jinsub Lim,Jieh Moon,Jihyeon Gim.Fully activated Li2MnO3 nanoparticles by oxidation reaction. Journal of Materials . 2012
  • 10A. Boulineau,L. Croguennec,C. Delmas,F. Weill.Structure of Li 2 MnO 3 with different degrees of defects[J]. Solid State Ionics . 2009 (40)

二级参考文献89

  • 1肖劲,曾雷英,彭忠东,赵浩,胡国荣.锂离子电池正极材料LiNi_(0.5)Mn_(0.5)O_2的循环性能[J].中国有色金属学报,2006,16(8):1439-1444. 被引量:14
  • 2王力臻.化学电源设计.北京:化学工业出版社,2007.
  • 3Hu Y S, Guo Y G, Dorninko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv. Mater., 2007, 19(15): 1963-1966.
  • 4Numata K, Sakaki C, Yamanaka S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem. Lett., 1997(8): 725-726.
  • 5Tabuchi M, Nakashima A, Shigemura H, et al. Synthesis cation distribution,and electrochemical properties of Fe-substituted L~zMnO~ as a novel 4 V positive electrode material. J. Electrochem. Soc., 2002, 149(5): A509-A524.
  • 6Lu Z, Macneil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3.2x/3)Mn(2:3-x3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett., 2001, 4(11): A191-A194.
  • 7Lu Z, Beanlieu L Y, Donaberger R A. Synthesis, structure, and eleclrochemical behavior of Li[NiLiMn]O. J. Electrochem. Soc., 2002, 149(6): A778-A791.
  • 8Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi1/3-2x/3Mn2/3-x/3]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc., 2002, 149(7): A815-A822.
  • 9Lee D K, Park S H, Amineb K, et al. High capacity Li[Lio.2Nio.zMno.6]O2 cathode materials via a carbonate co-precipitation method. Journal of Power Sources, 2006, 162(2): 1346-1350.
  • 10Tabuchi M, Nabeshima Y, Ado K, et al. Material design concept for Fe-substituted Li2MnO3-based positive electrodes. J. Power Sources, 2007, 174(2): 554-559.

共引文献62

同被引文献32

  • 1欧秀芹,孙新华,赵庆云,范飞.锂离子废电池资源化技术进展[J].无机盐工业,2005,37(9):11-14. 被引量:14
  • 2李健,赵乾,崔宏祥.废旧手机锂离子电池回收利用效益分析[J].中国资源综合利用,2007,25(5):15-18. 被引量:22
  • 3北京中投信德产业研究中心.废旧蓄电池回收综合利用项目可行性研究报告[R].2014.
  • 4TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
  • 5GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
  • 6ZHU Ji-ping, ZHANG Sheng, XIN Zhi-qiang, XU Quan-bao, SU Hui. Synthesis and electrochemical properties of LiCo0.9Ni0.05Mn0.05O2 cathode material with high rate capability for lithium ion batteries[J]. The Chinese Journal of Nonferrous Metals 2014, 24(11): 2813-2820.
  • 7MARTHA S K, NANDA J, WVEITH G M, DUDNEY N J. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2[J]. Journal of Power Sources, 2012, 199(1): 220-226.
  • 8JOHNSON C S, Li N, LEFIEF C, LEFIEF C, VAUGHEY J T, THACKERAY M M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3. (1-x)LiMno.333Ni0.333Co0.33302(0 ≤ x ≤ 0.7)[J]. Chemistry of Materials, 2008, 20(19): 6095-6106.
  • 9THACKERAY M M, KANG S H, JOHNSON C S, VAUGHEY J T, BENEDEK R, HACKNEY S A. Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125.
  • 10MA Jun, ZHOU Yong-Ning, GAO Yu-mi, YU Xi-qian, KONG Qing-yu, GU Lin, WANG Zhao-xiang, YANG Xiao-Qing, CHEN Li-quan. Feasibility of using Li2MoO3 in constructing Li-Rich high energy density cathode materials[J]. Chemistry of Materials, 2014, 26: 3256-3262.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部