期刊文献+

神经网络反馈分析方法预测土体热阻系数研究 被引量:10

Utilization of neural network feedback method to prediction of thermal resistivity of soils
在线阅读 下载PDF
导出
摘要 为研究不同土体的热传导特性,通过文献数据归纳整理,简要分析了土体热阻系数与主要影响因素的相关关系。利用神经网络反馈分析方法,提出土体热阻系数的预测模型,并对所提模型的有效性与优越性进行了对比验证。结果表明:反馈神经网络能够简便、有效的预测土体热阻系数,所建模型以干密度、饱和度和石英含量为输入参数,较为全面、合理地反映了影响土体热传导性质的主要因素;预测模型具有较高的精度,预测值与实测值的相关系数R^2大于0.93,均方根误差RMSE低于28 K?cm/W,方差比VAF大于94%;与传统经验关系式相比,反馈分析模型在新环境中的预测结果上具有显著的优越性。 In order to study the heat transfer characteristics of different soils,the correlation between the thermal resistivity of soil and the main influencing factors is analyzed briefly through the literature data.A prediction model for thermal resistivity of soils by the using neural network is proposed,and the effectiveness and superiority of the proposed model are compared.The measured thermal resistivity is compared with the predicted results of the feedback neural network model.The results show that the feedback neural network can accurately and effectively predict the thermal resistivity of soils.The model adopts dry density,saturation and quartz content as the input parameters,which comprehensively and reasonably reflect the main factors affecting the thermal conductivity of soils.The prediction model has high precision,the correlation coefficient R^2 of the predicted and measured values is greater than 0.93,the root meansquare error(RMSE)is lower than 28 K?cm/W,and the variance accounting for(VAF)is greater than 94%.Compared with the traditional empirical relationship,the feedback analysis model has significant advantages in the predicted results in the new environment.
作者 王才进 张涛 骆俊晖 马冲 段隆臣 WANG Cai-jin;ZHANG Tao;LUO Jun-hui;MA Chong;DUAN Long-chen(Faculty of Engineering,China University of Geosciences,Wuhan 430074,China;Guangxi Communications Design Group Co.,Ltd.,Nanning 530029,China;School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2019年第A02期109-112,共4页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金青年基金项目(41807260) 湖北省自然科学基金项目(2018CFB385) 中央高校基本科研业务项目(CUG170636、UCG170807)
关键词 热传导 影响因素 神经网络 预测模型 thermal conduction influencing factors neural network prediction model
作者简介 王才进(1995—),男,硕士研究生,主要从事岩土材料传热传质性能方面的研究工作。E-mail:wangcaijin@cug.edu.cn;通讯作者:张涛,E-mail:zhangtao_seu@163.com
  • 相关文献

同被引文献105

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部