期刊文献+

不规则时间序列波动率建模:高频与低频的统一 被引量:6

Modeling volatility of irregularly spaced time series:Union of high-frequency and low-frequency data
原文传递
导出
摘要 在Kim和Wang (2016)提出的统一的GARCH-Ito模型的基础上进行推广,提出了一种将高频与低频数据相结合进行波动率建模的更一般的方法.该方法允许在高频波动率中以一种更加灵活的方式嵌入低频的GARCH结构,从而拓宽了模型的适用范围.理论研究表明,模型参数的拟似然估计具有良好的极限性质,模拟研究则验证了估计量在有限样本下的有效性.在实证分析中,新方法被用于改进Easley等(2013, 2016)提出的BVC算法,得到了市场参与者交易意图的更精确的估计. This paper extends the unified GARCH-Ito model proposed by Kim and Wang(2016) and introduces a more general method to model volatility with the combination of high-frequency and lowfrequency data. The new method embeds a low-frequency GARCH structure into high-frequency volatility in a more flexible way, thus embraces a broader application. Theory and simulation study found good asymptotic property and finite sample performances of the quasi-maximum likelihood estimators proposed.In an empirical study, this new method was used to improve the bulk volume classification(BVC, Easley et al.(2013, 2016)). As a result, market participants’ trading intentions were estimated more precisely.
作者 吴奔 张波 赵丽丽 WU Ben;ZHANG Bo;ZHAO Lili(Center for Applied Statistics,School of Statistics,Renmin University of China,Beijing 100872,China;Business College,Yangzhou University,Yangzhou 225127,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2019年第1期36-48,共13页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71271210 71471173) 教育部人文社会科学重点研究基地项目(14JJD910002) 江苏省高校哲学社会科学研究基金(2018SJA1148)~~
关键词 高频数据 GARCH结构 BVC算法 high-frequency data GARCH structure bulk volume classification
作者简介 通讯作者:张波(1960-),男,汉,黑龙江拜泉人,教授,博士,博士生导师,研究方向:金融高频数据分析,金融计量学,E-mail:mabzhang@ruc.edu.cn;吴奔(1991-),男,汉,浙江富阳人,博士研究生,研究方向:金融高频数据分析,E-mail:wuben1682000@163.com;赵丽丽(1983-),女,汉,山东聊城人,讲师,博士,研究方向:金融数据分析,E-mail:zhaolililut@163.com.
  • 相关文献

参考文献3

二级参考文献30

  • 1O'Hara M.Market Microstructure Theory[M].Cambridge:Blackwell Publishers Inc.,1995.
  • 2Diamond D W,Verrecchia R E.Constraints on short-selling and asset price adjustments to private information[J]. Journal of Financial Economics,1987,18:277-311.
  • 3Admati A R,Pfieiderer P.A theory of intraday patterns:Volume and price variability[J].The Review of Financial Studies,1988,1(1):3-40.
  • 4Easley D,O'Hara M.Adverse selection and large trade volume:The implications for market efficiency[J].Journal of Financial and Quantitative Analysis,1992,27:185-208.
  • 5Engle R F,Russell J R.Autoregressive conditional duration:A new model for irregular spaced transaction data[J].Econometrica,1998,66(5):1127-1162.
  • 6Ghysels E,Jasiak J.GARCH for irregularly spaced financial data:The ACD-GARCH models[J].Studies in Nonlinear Economics and Econometrics,1998,2:133-149.
  • 7Engle R F,Lunde A.Trades and quotes:A bivariate point process[R].Department of Economics,UC San Diego, Economics Working Paper Series,1998:98-107.
  • 8Engle R F.The econometrics of ultra high frequency data[J].Econometrica,2000,68(1):1-22.
  • 9Dufour A,Engle R F.The ACD model:Predictability of the time between consecutive trades[R].Discussion Paper,2000.
  • 10Engle R F,Sun Z.Forecasting volatility using tick by tick data[C]// EFA 2005 Moscow Meetings,2005.

共引文献36

同被引文献69

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部