期刊文献+

求解条件极值问题的两个充分条件 被引量:4

Two full conditions for extreme value problem
在线阅读 下载PDF
导出
摘要 笔者给出并证明了两个判断条件极值的充分条件.可求解函数z=f(x,y)在附加条件为φ(x,y)=0和函数u=f(x,y,z)在附加条件为φ(x,y,z)=0的条件极值问题.利用Lagrange乘数法求出驻点,再用笔者给出求解条件极值的上述方法即可解决驻点是否为极值点. Two full conditions for the judgment of conditional extreme value are presented and proved.These conditions can help to work out the extreme value for the function z=f(x,y) under the additional condition φ(x,y)=0 and for the function u=f(x,y,z) under the additional condition φ(x,y)=0.Critical number can be worked out by using method of Lagrange multipliers and whether the critical number is the extreme value point can also be calculated by using the method offered by the author.
作者 刘大任
出处 《沈阳建筑工程学院学报(自然科学版)》 2004年第1期80-83,共4页 Journal of Shenyang Architectural and Civil Engineering University(Nature Science)
关键词 驻点 极值 条件极值 最大值 最小值 : . ' .. critical number extreme value condition extreme value maximum minimum
  • 相关文献

参考文献6

二级参考文献2

共引文献7

同被引文献29

  • 1马广韬.曲面间最短距离的确定[J].工程图学学报,2005,26(3):129-132. 被引量:3
  • 2Oliver R K, Webber M D. Supply Chain Management:Logistics catches up with strategy[M]. London: Chapman and Hall, 1992.
  • 3Lee H L. Creating value through supply chain integration[J]. Supply Chain Management Review, 2000, 4 ( 4 ):30 - 36.
  • 4Simatupang T M, Sridharan R. The collaborative supply chain: a scheme for information sharing and incentive alignment[J]. International Journal of Logistics Management, 2002, 13(2): 27 - 31.
  • 5Wang C X. A General Framework Of Supply Chain Contract Models[J]. Decision Sciences Institute, 2002, 15(2) :21 - 25.
  • 6Togar M, Simatupang T M, Wright A C. The knowledge of coordination for supply chain integration[J]. Business Process Management Journal, 2002, 8 (3): 289 - 308.
  • 7Spengler J J. Vertical integration and antitrust policy[J].Journal of Political Economy, 1950(58):347- 352.
  • 8Cachon G. Supply chain coordination with contracts[A].Technical report,The Wharton School of Business[C].philadelphia: University of Pennsylbania, 2001. 402 -406.
  • 9DonaldHearn M PaulineBaker.计算机图形学[M].北京:电子工业出版社,2002..
  • 10Foulds L R. Optimization Techniques[M]. New York:Springer-Verlag, 1991.158-180.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部