期刊文献+

Machine Learning and Micromagnetic Studies of Magnetization Switching

在线阅读 下载PDF
导出
摘要 Magnetization switching is one of the most fundamental topics in the field of magnetism.Machine learning(ML)models of random forest(RF),support vector machine(SVM),deep neural network(DNN)methods are built and trained to classify the magnetization reversal and non-reversal cases of single-domain particle,and the classification performances are evaluated by comparison with micromagnetic simulations.The results show that the ML models have achieved great accuracy and the DNN model reaches the best area under curve(AUC)of 0.997,even with a small training dataset,and RF and SVM models have lower AUCs of 0.964 and 0.836,respectively.This work validates the potential of ML applications in studies of magnetization switching and provides the benchmark for further ML studies in magnetization switching.
作者 Jing-Yue Miao 缪静月(Key Laboratory of Advanced Materials(MOE),School of Materials Science and Engineering,Tsinghua University,Beijing 100084;Argonne National Laboratory,Chicago,USA)
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第9期64-67,共4页 中国物理快报(英文版)
作者简介 Corresponding author:Jing-Yue Miao,Email:miujy15@mails.tsinghua.edu.cn
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部