期刊文献+

基于RBF神经网络的地下水动态模拟与预测 被引量:18

Simulation and Prediction of Underground Water Dynamics based on RBF Neural Network
在线阅读 下载PDF
导出
摘要 RBF网络具有结构自适应确定、输出与初始权值无关的优良特性。以matlab为平台将该网络应用于某地的地下水动态模拟与预测 ,较为系统地研究了训练样本集与检测样本集的构建、原始数据的预处理、神经网络的构建、训练、检测及结果评价整个过程 ,取得了良好效果。同时 ,还与BP网进行了对比 ,认为 。 This papae introduces the principles of RBF network and the training methods, points out that: RBF network has advantageous properties such as independence of the output on initial weight value and adaptation for determining the construction. Using the “matlab” as the platform,we apply the network for simulation and prediction of underground water dynamics of one place. And reach a good achievement in studying completly a whole process in the construction of training samples assemble and checking samples assemble,pretreatment of original data, establishment, training, inspection and result-evaluation of the neural network. At the same time, drawbacks on BP net such as artificiality for determining the construction, inferiority to RBF net on accuracy and speed of training and random of initial weight value to the outcome are all manifested after comparing RBF net and BP net. In conclusion, RBF network is a neural network model on simulation and prediction of underground water dynamics which is deserved to be popula rized.
出处 《地球学报》 EI CAS CSCD 北大核心 2003年第5期475-478,共4页 Acta Geoscientica Sinica
基金 国家自然科学基金专项基金项目 ( 4 0 2 42 0 18)
关键词 人工神经网络 地下水资源 动态模拟 动态预测 BP网络 RBF网络 underground water simulation and prediction of dynamics BP network RBF network
  • 相关文献

参考文献3

二级参考文献10

  • 1樊保东.山区地下水动态关联分析[J].地下水,1997,19(1):23-26. 被引量:12
  • 2焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1995..
  • 3胡守仁.神经网络应用技术[M].北京:国防科技大学出版社,1998..
  • 4胡守仁.神经网络导论[M].长沙:国防科技大学出版社,1998.113-121.
  • 5[1]H Demuth,M Beale. Neural Network Toolbox User's Guide[M].The Math Works Inc, 1997.7
  • 6[2]P D Wasserman.advanced Methods in Neural Computing[M].New York:Van Norstrand Reinhold,1993
  • 7[3]J-S Roger Jang,C-T Sun.Functional Equivalence between radial basis fuction networks and fuzzy inference system[J].IEEE Trans.on Neural Networks, 1993 ;4( 1 ): 156-159
  • 8罗四维,人工神经网络建造,1998年,100页
  • 9胡守仁,神经网络导论,1998年,113页
  • 10胡守仁,神经网络应用技术,1998年,82页

共引文献80

同被引文献199

引证文献18

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部