期刊文献+

Fe-substituted Ba-hexaaluminate with enhanced oxygen mobility for CO_2 capture by chemical looping combustion of methane

Fe-substituted Ba-hexaaluminate with enhanced oxygen mobility for CO_2 capture by chemical looping combustion of methane
在线阅读 下载PDF
导出
摘要 While Fe-based oxygen carriers(OC) are regarded to be promising for chemical looping combustion(CLC),the decrease of CO_2 selectivity during deep reduction process and the severe agglomeration of Fe_2O_3 often occur after multiple redox cycles due to the low oxygen mobility.Herein,Fe-substituted Bahexaaluminates(Ba Fe_xAl_(12)– xO_(19),denoted as BF_xA-H,x = 1 and 2) prepared by a modified two-step method exhibited not only higher amount of converted oxygen(Ot) and CH_4 conversion(77% and 81% vs.17%and 75%) than those prepared by the traditional co-precipitation method(BF_xA-C,x = 1 and 2) but also high CO_2 selectivity above 92% during the nearly whole reduction from Fe^(3+) to Fe^(2+).Furthermore,the BFxA-H exhibited the excellent recyclability during 50 cycles.The better performance was ascribed to the markedly enhanced oxygen mobility which resulted from dominant occupancy of Fe cations in Al(5) sites(Fe^5: 71% and 70% vs.49% and 41%) in mirror planes of hexaaluminate leading to larger amount of lattice oxygen coordinated with Fe^5(O–Fe^5)(0.45 and 0.85 mmol/g vs.0.31 and 0.50 mmol/g).The improvement of oxygen mobility also favored the preservation of chemical state of Fe cations in hexaaluminate structure in the re-oxidation step,resulting in the excellent recyclability of BF_xA-H. While Fe-based oxygen carriers(OC) are regarded to be promising for chemical looping combustion(CLC),the decrease of CO_2 selectivity during deep reduction process and the severe agglomeration of Fe_2O_3 often occur after multiple redox cycles due to the low oxygen mobility.Herein,Fe-substituted Bahexaaluminates(Ba Fe_xAl_(12)– xO_(19),denoted as BF_xA-H,x = 1 and 2) prepared by a modified two-step method exhibited not only higher amount of converted oxygen(Ot) and CH_4 conversion(77% and 81% vs.17%and 75%) than those prepared by the traditional co-precipitation method(BF_xA-C,x = 1 and 2) but also high CO_2 selectivity above 92% during the nearly whole reduction from Fe^(3+) to Fe^(2+).Furthermore,the BFxA-H exhibited the excellent recyclability during 50 cycles.The better performance was ascribed to the markedly enhanced oxygen mobility which resulted from dominant occupancy of Fe cations in Al(5) sites(Fe^5: 71% and 70% vs.49% and 41%) in mirror planes of hexaaluminate leading to larger amount of lattice oxygen coordinated with Fe^5(O–Fe^5)(0.45 and 0.85 mmol/g vs.0.31 and 0.50 mmol/g).The improvement of oxygen mobility also favored the preservation of chemical state of Fe cations in hexaaluminate structure in the re-oxidation step,resulting in the excellent recyclability of BF_xA-H.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期50-57,共8页 能源化学(英文版)
基金 supported by the National Science Foundation of China (NSFC) (21303137,21406225 and 21676269) the National Key Project for Fundamental Research and Development of China (2016YFA0202801) Postdoctoral Science Foundation of China (2014M561261)
关键词 CO2 CAPTURE Chemical LOOPING CH4 conversion Oxygen mobility FE-BASED HEXAALUMINATE CO_2 capture Chemical looping CH_4 conversion Oxygen mobility Fe-based hexaaluminate
作者简介 Corresponding author:Ming Tian,E-mail addresses:tm1982@dicp.ac.cn(M.Tian);Corresponding author:Xiaodong Wang,E-mail addresses:xdwang@dicp.ac.cn(X.Wang).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部