期刊文献+

Co-electrolysis of CO_2 and H_2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes 被引量:10

Co-electrolysis of CO_2 and H_2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes
在线阅读 下载PDF
导出
摘要 Co-electrolysis of CO2and H2O using high-temperature solid oxide electrolysis cells(SOECs) into valuable chemicals has attracted great attentions recently due to the high conversion and energy efficiency,which provides opportunities of reducing CO2emission, mitigating global warming and storing intermittent renewable energies. A single SOEC typically consists of an ion conducting electrolyte, an anode and a cathode where the co-electrolysis reaction takes place. The high operating temperature and difficult activated carbon-oxygen double-bond of CO2put forward strict requirements for SOEC cathode. Great efforts are being devoted to develop suitable cathode materials with high catalytic activity and excellent long-term stability for CO2/H2O electro-reduction. The so far cathode material development is the key point of this review and alternative strategies of high-performance cathode material preparation is proposed. Understanding the mechanism of CO2/H2O electro-reduction is beneficial to highly active cathode design and optimization. Thus the possible reaction mechanism is also discussed. Especially, a method in combination with electrochemical impedance spectroscopy(EIS) measurement, distribution functions of relaxation times(DRT) calculation, complex nonlinear least square(CNLS) fitting and operando ambient pressure X-ray photoelectron spectroscopy(APXPS) characterization is introduced to correctly disclose the reaction mechanism of CO2/H2O co-electrolysis. Finally, different reaction modes of the CO2/H2O coelectrolysis in SOECs are summarized to offer new strategies to enhance the CO2conversion. Otherwise,developing SOECs operating at 300-600 °C can integrate the electrochemical reduction and the Fischer-Tropsch reaction to convert the CO2/H2O into more valuable chemicals, which will be a new research direction in the future. Co-electrolysis of CO_2 and H_2O using high-temperature solid oxide electrolysis cells(SOECs) into valuable chemicals has attracted great attentions recently due to the high conversion and energy efficiency,which provides opportunities of reducing CO_2 emission, mitigating global warming and storing intermittent renewable energies. A single SOEC typically consists of an ion conducting electrolyte, an anode and a cathode where the co-electrolysis reaction takes place. The high operating temperature and difficult activated carbon-oxygen double-bond of CO_2 put forward strict requirements for SOEC cathode. Great efforts are being devoted to develop suitable cathode materials with high catalytic activity and excellent long-term stability for CO_2/H_2O electro-reduction. The so far cathode material development is the key point of this review and alternative strategies of high-performance cathode material preparation is proposed. Understanding the mechanism of CO_2/H_2O electro-reduction is beneficial to highly active cathode design and optimization. Thus the possible reaction mechanism is also discussed. Especially, a method in combination with electrochemical impedance spectroscopy(EIS) measurement, distribution functions of relaxation times(DRT) calculation, complex nonlinear least square(CNLS) fitting and operando ambient pressure X-ray photoelectron spectroscopy(APXPS) characterization is introduced to correctly disclose the reaction mechanism of CO_2/H_2O co-electrolysis. Finally, different reaction modes of the CO_2/H_2O coelectrolysis in SOECs are summarized to offer new strategies to enhance the CO_2 conversion. Otherwise,developing SOECs operating at 300-600 °C can integrate the electrochemical reduction and the Fischer-Tropsch reaction to convert the CO_2/H_2O into more valuable chemicals, which will be a new research direction in the future.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期839-853,共15页 能源化学(英文版)
基金 financial support from the Ministry of Science and Technology of China (Grants 2016YFB0600901 and 2013CB933100) the National Natural Science Foundation of China (Grants 21573222 and 91545202) the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB17020200) China Postdoctoral Science Foundation (NO. 2016M600220) the financial support from CAS Youth Innovation Promotion
关键词 SOECs Co-electrolysis Carbon dioxide STEAM CATHODE SOECs Co-electrolysis Carbon dioxide Steam Cathode
  • 相关文献

同被引文献80

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部