期刊文献+

改进人工蜂群算法及其轴流压气机优化应用 被引量:2

Improved Artificial Bee Colony Algorithm and Its Application on Optimization of Axial Compressor
在线阅读 下载PDF
导出
摘要 为了探索更优的全局优化算法并将其应用于轴流压气机气动优化上,将标准人工蜂群(ABC)算法中采蜜蜂和观察蜂探索新蜜源的方式进行改进,从而更好地利用总体蜜源的探索信息,得到改进人工蜂群(IABC)算法。经基准函数测试表明,改进算法既能提升全局寻优能力,又能加快收敛速度。采用IABC算法和经过校核的CFD数值方法搭建优化平台,对单级跨声速轴流压气机Stage35进行优化。优化变量为动叶和静叶径向6个截面的弯、掠、前缘重弯值和尾缘重弯值,以流量和压比相对变化保持在0.5%以内为约束条件,以提高绝热效率为优化目标。结果表明:在设计转速下,优化后设计点绝热效率提升0.83%,全工况范围内平均绝热效率提升2.0%,同时喘振裕度提升1.0%,验证了IABC算法在轴流压气机优化中的有效性。 For the purpose of exploring better global optimization algorithm and applying it on the aerody-namic optimization of axial compressors,the exploration ways of employed bees and onlookers bees in standardartificial bee colony(ABC)algorithm were improved to make better use of the overall bee colony exploration in-formation.The improved artificial bee colony(IABC)algorithm was obtained in this way.This algorithm was test-ed by benchmark functions and the results showed that it can both enhance the ability of global optimization andspeed up the convergence rate.The IABC algorithm and the CFD simulation method which was checked were ap-plied on the optimization of single stage transonic axial compressor Stage35.The optimization variables includedsweep,lean,Re-camber at the leading edge and the trailing edge at the six sections along the radial direction ofthe rotor blade and stator blade.The relative change of flow rate and pressure ratio within 0.5%were kept as aconstraint and enhancing the adiabatic efficiency was as the optimization goal.The results were as follows:at thedesigned speed,the optimized adiabatic efficiency at designed point increased by 0.83%,the average adiabaticefficiency over whole range of condition increased by 2.0%,and the surge margin increased by 1.0%under thecondition that the mass flow and the pressure ratio basically remained the same,and it verified the effectivenessof the optimization algorithm in axial compressor.
作者 成金鑫 陈江 向航 CHENG Jin-xin;CHEN Jiang;XIANG Hang(School of Energy and Power Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100191,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2019年第6期1264-1273,共10页 Journal of Propulsion Technology
基金 国家自然科学基金(51576007)
关键词 改进人工蜂群算法 全局寻优 收敛速度 轴流压气机 Improved artificial bee colony algorithm Global optimization Convergence speed Axial flow compressor
作者简介 成金鑫,博士生,研究领域为叶轮机械气动热力学。E-mail:542508504@qq.com;通讯作者:陈江,博士,研究员,研究领域为叶轮机械气动热力学。E-mail:chenjiang27@buaa.edu.cn
  • 相关文献

参考文献6

二级参考文献16

  • 1周正贵.压气机叶片端壁附面层区叶型优化设计[M].南京航空航天大学,2000..
  • 2严汝群,工程热物理学报,1981年,2卷,1期
  • 3严汝群,工程热物理学报,1989年
  • 4刘波,航空动力学报,1988年,3卷,3期
  • 5田盛丰,人工智能原理与应用.专家系统,机器学习,面向对象的方法,1993年,286页
  • 6Jang M.Genetic algorithm based design of transonic airfoils using Euler equations[R].AIAA 2000-1584,2000.
  • 7Terry L.Aerodynamic shape optimization using a realnumber-encoded genetic algorithm[R].AIAA 2001-2473,2001.
  • 8Besnard E.Design optimization with advanced simulated annealing[R].AIAA 99-0186,1999.
  • 9Lee S L.Aerodynamic design of transonic airfoils using simulated annealing and Navier-Stokes equations[R].AIAA 2000-0782,2000.
  • 10Holland J H.Adaptation in natural and artificial systems[M].MI:University of Michigan Press,1975.

共引文献53

同被引文献46

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部