期刊文献+

霍尔推力器阳极加热机制及设计优化 被引量:2

Heating Mechanism and Thermal Design Optimization of Anode in a Hall Thruster
在线阅读 下载PDF
导出
摘要 阳极的过热不仅降低霍尔推力器的放电稳定性和推力效率,同时也是推力器的一种失效原因,直接引起推力器放电电流、功率异常增加导致关机故障。为在设计阶段解决阳极过热失效问题,本文通过理论分析建立了阳极热过程模型,分析得到阳极鞘层的形成是影响阳极热功率的核心过程,而阳极电流密度和磁感应强度是影响鞘层特性的关键参数。研究结果表明,阳极鞘层电势差随阳极电流密度的提高而增大,在典型近阳极区等离子体参数下,阳极电流密度小于600A/m2时,阳极负鞘层形成;而阳极热功率随着近阳极区磁感应强度的增加而升高,将阳极位置设计在零磁场区是最有利于降低阳极热功率的设计。 The anode overheating not only causes the reduction of the discharge stability and thrust efficiency, but also can be treated as a kind of failure mode of Hall thrusters, which directly causes the discharge current and power consumption abnormally increased, even immediately shut down. Therefore, in order to solve the anode overheating problem, the anode thermal process theoretical model is established. The model analysis results indicate that the anode sheath forming process is core process effecting the thermal power of the anode, and the anode current density and magnetic field strength are the key factors in the sheath forming process.The research results show that the anode sheath potential drop increases with the anode current density. In the typical plasma parameters near the anode region, the negative anode sheath will form if the anode current density is less than 600 A/m2. Furthermore, the anode thermal power also increases with the magnetic field strength near the anode region, therefore, keeping the anode position in the zero magnetic field region will be the optimized design to reduce the thermal power of the anode.
作者 张旭 魏鑫 刘敏 吕红剑 于达仁 ZHANG Xu;WEI Xin;LIU Min;LYU Hong-jian;YU Da-ren(Institute of Telecommunication Satellite,China Academy of Space Technology,Beijing 100089,China;School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2019年第3期699-706,共8页 Journal of Propulsion Technology
关键词 阳极 加热机制 低温等离子体 霍尔推力器 Anode Heating mechanism Low temperature plasma Hall thruster
作者简介 通讯作者:张旭,博士,工程师,研究领域为空间电推进技术、低温等离子体测量及诊断技术等。E-mail:zx1987168@163.com
  • 相关文献

参考文献2

二级参考文献30

  • 1张天平,唐福俊,田华兵,袁子.电推进航天器的特殊环境及其影响[J].航天器环境工程,2007,24(2):88-94. 被引量:14
  • 2张郁.电推进技术的研究应用现状及其发展趋势[J].火箭推进,2005,31(2):27-36. 被引量:45
  • 3Manzella D, Jankovsky R, Elliott F, et al. Hall Thrust- er Plume Measurements on-Board the Russian Express Satellites[ R ]. NASA/TM-2001-211217.
  • 4Sitnikova N, Volkov D, Maximov I, et al. Hall Effect Thruster Interactions Data from the Russian Express- A2 and Express-A3 Satellites[R]. NASA/CR-2003-212005.
  • 5Colbert TS, Day M, Fischer G, et al. Plan and Status of the Development and Qualification Program for Station- ary Plasma Thruster [C]. Monterey: Joint Propulsion Conference and Exhibit, 1993.
  • 6Walker R M L, Gallimore A D. Hall Thruster Cluster Operation with a Shared Cathode[J]. Journal of Propul- sion and Power, 2007, 23(3): 528-536.
  • 7Linnell J A, Gallimore A D. Efficiency Analysis of a Hall Thruster Operating with Krypton and Xenon [J]. Journal of Propulsion and Power, 2006, 22(6): 1402- 1418.
  • 8Book C F, Walker R M L. Effect of Anode Temperature on Hall Thruster Performance [J]. Journal of Propulsion and Power, 2010, 26(5): 1036-1044.
  • 9Ross J L, Sommerville J D, King L B. Energy-Loss Mechanisms of a Low-Discharge-Voltage Hall Thruster [J]. Journal of Propulsion and Power, 2010, 26 (6): 1312-1317.
  • 10Morozov A I, Savelyev V V. Fundamentals of Stationary Plasma Thruster Theory [M]. Springer US: Reviews of Plasma Physics, 2000.

共引文献18

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部