期刊文献+

基于CEEMDAN和1.5维谱的滚动轴承早期故障诊断方法 被引量:6

Early fault diagnosis of rolling bearing based on CEEMDAN and 1.5 dimension spectrum
在线阅读 下载PDF
导出
摘要 针对滚动轴承早期故障难以识别的问题,提出一种自适应白噪声的完备总体经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)和1.5维谱相结合的滚动轴承故障诊断方法。该方法首先运用CEEMDAN对振动信号进行分解,得到一系列IMF分量,然后根据峭度准则以及相关系数准则提取一个包含主要故障信息的IMF分量,最后对提取的IMF分量进行1.5维谱分析,通过分析谱图中突出成分以确定轴承故障类型。利用仿真信号和工程实验数据对该方法进行分析验证,所得出结果的谱图均比用单一方法得出的谱图清晰,充分证明该方法在滚动轴承早期故障诊断中的优势。 In order to solve the problem that early failure of rolling bearings information are difficult to identify, a new method of rolling bearing fault diagnosis based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) and 1.5 dimension spectrum is proposed. Firstly, the CEEMDAN method is used to decompose the vibration signal, a signal of a finite number of intrinsic mode component(IMF) is obtained. Then, according to the kurtosis criterion and correlation coefficient criterion of each component, a IMF component containing important fault information is extracted. Finally, the extracted IMF component is analyzed by 1.5 dimension spectrum, fault type of bearing can be determined by analyzing the prominent components in 1.5 dimension spectrum. The method is analyzed and verified by simulation signal and engineering experiment data. The spectrum results obtained are much clearer than those obtained by single method.The advantages of this method in the early fault diagnosis of rolling bearing are fully proved.
作者 黄慧杰 孙百祎 任学平 刘淮全 HUANG Huijie;SUN Baiyi;REN Xueping;LIU Huaiquan(Institute of Mechanical Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China;Taishan Campus of Shandong Transport Vocational College,Taian 271000,China)
出处 《中国测试》 CAS 北大核心 2019年第2期151-156,共6页 China Measurement & Test
基金 国家自然科学基金项目(51565046) 内蒙古自治区高等学校科学研究项目(NJZY16154)
关键词 滚动轴承 早期故障 自适应白噪声的完备总体经验模态分解 1.5维谱 rolling bearings incipient faults CEEMDAN 1.5 dimension spectrum
作者简介 黄慧杰(1995-),男,山西运城市人,硕士研究生,专业方向为机械设备故障诊断及状态检测.
  • 相关文献

参考文献8

二级参考文献82

  • 1罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 2李崇晟,屈梁生.齿轮早期疲劳裂纹的混沌检测方法[J].机械工程学报,2005,41(8):195-198. 被引量:13
  • 3何田,刘献栋,李其汉.噪声背景下检测突变信息的奇异值分解技术[J].振动工程学报,2006,19(3):399-403. 被引量:31
  • 4WU Zhaohua, HUANG Norden E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proc R Soc Lond: A, 2004,460:1597-1611.
  • 5WU Zhaohua, HUANG Norden E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009,1(1) :1-41.
  • 6HUANG Norden E, ZHENG Shen, STEVEN R L. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond.. A, 1998, 454:903- 995.
  • 7FLANDRIN P, CONCALVES G, RILLIN G. Empirical mode decomposition as a filter bank [J]. IEEE Signal Processing, 2004,11 (2) : 112-114
  • 8Smith J S. The Local Mean Decomposition and ItsApplication to EEG Perception Data[J]. Journal ofthe Royal Society Interface,2005 ?2(5) :443-454.
  • 9Wang Yanxue,He Zhengjia,Zi Yanyang. A Demod-ulation Method Based on Improved Local Mean De-composition and Its Application in Rub - impactFault Diagnosis[J]. Measurement Science and Tech-nology,2009 ,20(2):1-10.
  • 10Ming Y, Chen J, Dong G M. Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum[J]. LMechanical System and Signal Processing, 2011, 25(5): 1773-1785.

共引文献266

同被引文献53

引证文献6

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部