期刊文献+

微机械陀螺的发展现状 被引量:37

THE STATE OF THE ART OF MICROMACHINED GYROSCOPES
在线阅读 下载PDF
导出
摘要 随着对微电子机械系统(MEMS)的深入研究和取得的进展,属于MEMS研究内容之一的微机械陀螺,在汽车工业需求的推动下,已经成为过去几十年内广泛研究和发展的主题。微机械陀螺与传统机械式陀螺、固体陀螺、光学陀螺等相比,具有成本低、尺寸小、重量轻、可靠性高等优点,其精度正不断得到提高,应用领域也随之不断扩大.本文首先简要介绍了微机械陀螺的定义及特征、性能指标、工作原理、分类以及加工技术,随后对己出现的不同类型微机械陀螺的结构、加工方式、工作原理以及性能进行了综述,最后对微机械陀螺的商业化现状以及发展趋势进行了展望。 Along with the research and rapid development of Micro Electro-Mechanical Systems (MEMS), micromachined gyroscope as a part of MEMS driven by automobile industry has become a major focus of wide research and development in the past decades. Comparing with the conventional mechanical gyroscope, the solid-state gyroscope and optical gyroscope, the micromachined gyroscope has the advantages of low cost, small size, low weight and high reliability. With its performance improved further, the micromachined gyroscope can be applied in more extensive fields. In this paper, following a brief introduction of its definition, properties, performance indices, operation principles, classification and processes, various micromachined gyroscopes are discussed with respect to their structure, processes, operation principles and performance. Finally the current status of its commercialization and the trend of its developments in future are presented.
出处 《力学进展》 EI CSCD 北大核心 2003年第3期289-301,共13页 Advances in Mechanics
关键词 微机械陀螺 发展现状 微电子机械系统 MEMS 结构特点 工作原理 加工方法 哥氏加速度 汽车 MEMS, micromachined, gyroscope, coriolis acceleration, process
  • 相关文献

参考文献41

  • 1赵亚溥,王立森,孙克豪.Tabor数、粘着数与微尺度粘着弹性接触理论[J].力学进展,2000,30(4):529-537. 被引量:28
  • 2Zarabadi S, Vas T, Sparks D, Johnson J, et al.A resonating comb/ring angular rate sensor vacuum packaged via wafer bounding. In: International Congress and Exposition, Detroit Michigan, 1999-03-01-04. http://delphi.com/news/techpapers/1999/ SAE Technical Paper series: 1999-01-1043.
  • 3Tony K Tang, Roman C Gutierrez, Christopher B Stell, et al. A packaged silicon MEMS vibratory gyroscope for microscpacecraft. In: Proc IEEE Micro Electro Mechanical Sysems Workshov (MEMS'97). Japan. 1997,500-505.
  • 4Geiger W, Folkmer B, Merz J, et al. A new silicon rate gyroscope. In: Proc IEEE Micro Electro Mechvadcal Sysems Workshop (MEMS'98). Germany, 1998. 615-620.
  • 5Funk K, F.mmerlch H, Schilp A, et al. A surface micromachined silicon gyroecope using a thick polysilicon layer. In: Micro Elector Mechanical Systems, 1999, MEMS'99. Twelfth IEEE International Conference, 1999-01-17-21. 1999, 57,-60.
  • 6An S, Oh Y S, Park K Y, et al. Dual-axis microgyroecope with closed-loop detection. Sensors and Actuators, 1999,73:1-6.
  • 7McNie M, King D, Vizard C, et aL High aspect ratio micromachining (HARM) technologies for microinertial device.Microsystem Technologies, 2000, 6:184-188.
  • 8Torti R, Tran H, Sandberg D, et al. Electrootaticaaly suspended and sensed micromedmnical rate gyroscope. In:Proc SPIE 1994 Syrup. On Micromachining and Microfabrication. Austin, TX, 1994. 27-31.
  • 9Michael Kraft, Farooqui Mateen M, Evans Alan G R Modelling and design of an electrostatically levitated disk for inertial sensing applications. J Micromech Microeng, 2001,11(4): 423-427.
  • 10Seter D J, Degani O, Socher E, et al. Characterization of a novel micromachined optical vibrating rate gyroscope. Review of Scientific Instruments, 1999, 70(2): 1274-1276.

二级参考文献3

共引文献27

同被引文献260

引证文献37

二级引证文献239

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部