期刊文献+

量子系综对的量子关联性 被引量:2

Quantum correlation of a pair of quantum ensembles
在线阅读 下载PDF
导出
摘要 研究一对量子系综{ε,η}的量子关联性。在量子信息论中,通过量子测量只能知道量子系统的状态ρ以一定的概率pi处于某个状态ρi,从而得到一系列的量子态ρ1,ρ2,…,ρn以及它们出现的相应概率p1,p2,…,pn;进而得到一个"量子系综"ε={pi,ρi}ni=1。构造一个四体量子态ρε,η,利用量子相对熵,定义了反映"量子系综对"所含量子关联的度量函数,揭示了这个度量函数的一些性质。 Quantum correlation in a pair{ε,η}of quantum ensembles is studied and computed.In quantum information theory,aquantum state of a quantum system lies in some stateρiat a certain probability pithrough a quantum measurement.Thus,quantum statesρ1,ρ2,…,ρnand corresponding probabilities p1,p2,…,pnare obtained and so an ensembleε={pi,ρi}ni=1is presented.To do this,a 4-partite quantum stateρε,ηis constructed,and based on quantum relative entropy,a measure function is defined in order to reveal the quantum correlation of the pair.Some properties of the measure function are proved.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期24-29,共6页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11171197 11371012)
关键词 量子系综 量子关联 经典关联 度量函数 quantum ensemble quantum correlation classical correlation measure function
  • 相关文献

参考文献14

  • 1Yu Guo,Jinchuan Hou.Necessary and sufficient conditions for the local creation of quantum discord[J]. Journal of Physics A: Mathematical and Theoretical . 2013 (15)
  • 2Zhihua Guo,Huaixin Cao.Local quantum channels preserving classical correlations[J]. Journal of Physics A: Mathematical and Theoretical . 2013 (6)
  • 3Zhihua Guo,Huaixin Cao.A Classification of Correlations of Tripartite Mixed States[J]. International Journal of Theoretical Physics . 2013 (6)
  • 4Shunlong Luo,Nan Li,Xuelian Cao.Relative entropy between quantum ensembles[J]. Periodica Mathematica Hungarica . 2009 (2)
  • 5Wu, Yu-Chun,Guo, Guang-Can.Norm-based measurement of quantum correlation. Physical Review A - Atomic, Molecular, and Optical Physics . 2011
  • 6Henderson, L.,0.Information, relative entropy of entanglement, and irreversibility. Physical Review . 2000
  • 7Vedral V.The role of relative entropy in quantum information theory[].Reviews of Modern Physics.2002
  • 8Rajagopal, A.K.,Rendell, R.W.Separability and correlations in composite states based on entropy methods. Physical Review A - Atomic, Molecular, and Optical Physics . 2002
  • 9Usha Devi A R,Rajagopal A K.Generalized information theoretic measure to discern the quantumness of correlations. Physical Review . 2008
  • 10Luo,Shunlong.Quantum discord for two-qubit systems. Physical Review A - Atomic, Molecular, and Optical Physics . 2008

共引文献1

  • 1ZHAO Yue-Xu Institute of Applied Mathematics and Engineering Computation,Hangzhou Dianzi University,Hangzhou 310018,ChinaMA Zhi-Hao Department of Mathematics,Shanghai Jiao Tong University,Shanghai 200240,China.Conditional Entropy of Partitions on Quantum Logic[J].Communications in Theoretical Physics,2007(7):11-13. 被引量:1

同被引文献24

  • 1Einsten A, Podolsky B, Rosen N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete [J]. Physics Review, 1935, 48(10):696-702.
  • 2Dur W, Vidal G, Cirac J I. Three Qubits Can Be Entangled in Two Inequivalent Ways [J]. Physical Review A, 2000, 62(6): 062314.
  • 3Kruszynska C, Krau B. Multipartite Entanglement and Global Information [J]. Quantum Physics, 2008, 79: 052304.
  • 4PAN Jianwei, Simon C, Brukner C, et al. Entanglement Purification for Quantum Communication [J]. Nature,2001, 410: 1067-1070.
  • 5PAN Jianwei, Gasparoni S, Ursin R, et al. Experimental Entanglement Purification of Arbitrary Unknown States [J]. Nature, 2003, 423: 417-421.
  • 6FAN Heng. Remarks on Entanglement Assisted Classical Capacity [J]. Phys Lett A, 2003, 313(3): 182-187.
  • 7Horodecki R, Horodecki P, Horodecki M, et al. Quantum Entanglement [J]. Reviews of Modern Physics, 2009, 81 : 865-942.
  • 8LI Ming, FEI Shaoming, Lijost X L. Quantum Entanglement: Separability, Measure, Fidelity of Teleportation and Distillation [J]. Advances in Mathematical Physics, 2010, 2010: 745-750.
  • 9HOU Jinchuan. A Characterization of Positive Linear Maps and Criteria of Entanglement for Quantum States [J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(38): 385201.
  • 10HOU Jinchuan, GUO Yu. Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems [J]. International Journal of Theoretical Physics, 2011, 50(4) : 1245-1254.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部