期刊文献+

CE/SE方法在非定常爆轰计算中的应用 被引量:16

Apply the CE/SE method to the simulation of unsteady detonation
在线阅读 下载PDF
导出
摘要 建立了非定常爆轰波的理论模型。根据CE/SE方法的基本思想,推导出适合于求解二维N S方程的长方形网格的CE/SE方法。对于包含刚性反应源项的守恒方程组,将其分为两部分,其中刚性反应源项单独求解。本文以爆轰管内装填C3H8/O2预混气体为例,数值模拟管内爆轰波的传播过程以及爆轰波脱离爆轰管后流场的图谱。计算结果显示,爆轰波在管内传播时,其波系极其复杂。当爆轰波离开出口后,迅速熄灭为非反应的激波。管外不仅有激波、膨胀波的传播,而且还存在激波与涡的相互作用。数值实践表明,该CE/SE方法可以有效捕获爆轰波与激波等强间断。 In this paper, a model of unsteady detonation is set up. Based on the idea of Chang's spacetime Conservation Element and Solution Element (CE/SE) method, a new approach of CE/SE is deduced for solving 2D NaverStokes equations on quadrilateral meshes. The conservation equations with still source terms for chemical reactions are divided into two parts: (1) the spacetime flux of the flow variables without concerning the source terms are solved by the CE/SE method; (2) the solution of the source terms is updated by using the forth order RungeKutta method. The detonation tube filling with a propane/oxygen is studied in this paper. The detail computations for detonation wave propagating inside tube and flow field outside tube are numerically simulated. The computational results show that the waves system is complex during detonation traveling inside tube. After detonation wave exits the tube, it quickly goes out and become shock. Shocks, expansion waves and vortexes are affected each other. The numerical simulation show that the CE/SE method deduced in this paper can effectually capture strong discontinuity such as detonation and shock.
出处 《空气动力学学报》 CSCD 北大核心 2003年第3期301-310,共10页 Acta Aerodynamica Sinica
关键词 非定常爆轰波 CE/SE方法 计算 传播过程 数值模拟 algorithm detonation shock wave numerical simulation.
  • 相关文献

参考文献10

  • 1CHANGE S C. The method of space-time conservation dement and solution element - a new approach for solving the Navier-Stokes and Euler equations [ J]. Journal Computational Physics, 1995,119 : 295-324.
  • 2PARK S J,YU S T and LAI M C. Direct calculations of stable and unstable ZND detonations by the space-time conservation element and solution element method[R]. AIAA 98-3212.
  • 3CHANG S C, WANG X Y and CHOW C Y. New developments in the method of space-time conservation element and solution element-applications to two-dimensional time-marching problems[R]. NASA TM 106758,1994.
  • 4JAMES R .SCOTT and CHANG SIN-CHANG. The space-time solution element method-a new numerical approach for the Naver-Stokes equations[R]. AIAA-1995-0763.
  • 5ZHANGE Z C, JOHN S T,YU. etc. The CE/SE method for Naver-Stokes equations using unstructured meshes for flows at all speeds[R]. AIAA-2000-0393.
  • 6ZHANG ZENG-CHAN, JOHN S T. A modified space-time conservation element and solution element for Eider and Naver-Stokes equations[R]. AIAA 99-3277.
  • 7YU SHENC,--TAO, CHANG SIN-CHUNG. Treatments of stiff source terms in conservation laws by the method of space-time conservation element & solution element[R]. AIAA 97-0435.
  • 8ZHANG Z C,JOHN S T YU. A generalized space-time CE/SE method for the ELder equations on quadrilateral and hexagonal meshes[R]. AIAA-2001-2592.
  • 9COOPE M, JACKSON S, AUSTIN J E. Wintenberger and J. E. Shepherd. Direct experimental impulse measureamnts for detonations and deflagrations[R]. AIAA 2001-3812.
  • 10CHANG S C,WANG X Y and TO W hi. Application of the space-time conversation element and solution element method to one-dimensional convection-diffusion problem [J]. J. Comput. Phy. ,2000, 165 : 189-195.

同被引文献110

引证文献16

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部