期刊文献+

基于双谱的水下目标辐射噪声的特征提取与分类研究 被引量:21

Bispectrum based feature extraction and classification of radiation noises from underwater targets
在线阅读 下载PDF
导出
摘要 以大量的水下目标辐射噪声资料为依托,借助高阶累积量分析法,研究了目标信号的非高斯特性.基于双谱估计和Walsh维数压缩技术提取了不同类别目标的65维双谱特征.结果表明,该特征对水下目标辐射噪声信号具有很好的分类效果,同时又能有效地抑制高斯有色噪声.对于六类水下目标辐射噪声信号,可取得约92%的正确分类率. For the radiation noises from underwater targets apparently contain non-Gaussian ingredients, their non-Gaussion features were studied through high-order cumulants. 65 dimensional bispectrum features were extracted from different targets through bispectrum estimation and WALSH dimensionality reduction, which indicates that the features greatly help the classification of noise signals from underwater targets, and efficiently restrains the coloured Gaussian noises. 92% of radiation noise signals from 6 types of underwater targets were properly identified.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 2003年第4期390-394,共5页 Journal of Harbin Engineering University
基金 国防科技重点实验室基金资助项目(OOJS22.6.1CB0106).
关键词 水下目标识别 双谱 WALSH变换 underwater target recognition bispectrum Walsh transform
  • 相关文献

参考文献5

  • 1张贤达.现代信号处理[M].清华大学出版社,1998.436-437.
  • 2BOASHASH B. A methodology for detection and classification of some underwater acoustic signals using time frequency analysis techniques[ J ]. IEEE Trans ASSP, 1990,38(11) :1829 - 1841.
  • 3BROCKETT P L, HINICH M ,WILSON G R. Nonlinear and non-gaussian ocean noise [J]. JASA,1987,82(4) : 16 -21.
  • 4NIKIAS C, MENDEL J. Signal processing with higher-order statistics[ J ]. IEEE Trans Signal Processing, 1993, 41:10-38.
  • 5FU Limin. Rule generation from neural networks[ J ]. IEEE Transaction on System, Man, and Cybernetics, 1994,24(8) :1114 - 1124.

共引文献14

同被引文献171

引证文献21

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部