期刊文献+

电能质量扰动小波变换检测与识别方法的发展 被引量:15

Development of wavelet-transform-based power quality disturbance detection and identification
在线阅读 下载PDF
导出
摘要 电能质量扰动问题近年来已经成为众多领域关注的焦点,国内外学者提出了一系列对电能质量扰动进行分析的方法。介绍几种常用的电能质量扰动检测和识别方法,重点分析了基于小波变换以及小波变换与其他方法如时域分析法、d-q变换、人工神经网络等相结合的电能质量扰动识别方法,比较了各种方法的特点,指出了该领域研究发展的前景。 In recent years,power quality disturbance has been concerned in many fields.Many me -thods to analyze this proble m have been put forward now.Several approaches commonly used to detect and identify the disturbances are presented.The wavelet-transform-based methods and its combination with other arithmetic,such as time-domain analysis,d-q conversion,artificial neural net-work etc.,are focused on.The performance comparisons are made among these approaches,including merits and defects.The study prospect of power quality disturbance detection and identification is given.
出处 《电力自动化设备》 EI CSCD 北大核心 2003年第9期67-71,共5页 Electric Power Automation Equipment
基金 高等学校博士学科点专项科研基金资助项目(20010079002)~~
关键词 电能质量 扰动检测与识别 小波变换 奇异性 power quality disturbance detection and identification wavelet transform singularity
  • 相关文献

参考文献29

二级参考文献69

  • 1戴家祯,方富淇.电力系统机网暂态过程波形分析[J].电力系统自动化,1993,17(2):9-15. 被引量:6
  • 2林海雪.对电能质量改善的几点看法[J].电网技术,1994,18(4):55-58. 被引量:11
  • 3李庚银,陈志业,杨峰.电力系统暂态波形分析方法[J].中国电机工程学报,1995,15(3):204-209. 被引量:11
  • 4王晓茹.基于小波变换和神经网络的高压电网故障信号处理与保护研究:博士学位论文[M].成都:西南交通大学,1998..
  • 5[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998.
  • 6[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243.
  • 7[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476.
  • 8[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485.
  • 9[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235.
  • 10[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044.

共引文献582

同被引文献114

引证文献15

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部