期刊文献+

随机偏微分方程——建模,分析与有效动力学

Stochastic Partial Differential Equations——Modeling,Analysis and Effective Dynamics
在线阅读 下载PDF
导出
摘要 综述随机偏微分方程的基本概念、理论、方法与应用,内容包括Hilbert空间中的Wiener过程、Ito随机积分、随机偏微分方程的解及其有效动力学。还介绍了随机偏微分方程的粗糙轨道、正则结构以及在Kardar-ParisiZhang(KPZ)方程中的应用。还介绍了段金桥与王伟的著作《Effective Dynamics of Stochastic Partial Differential Equations(随机偏微分方程的有效动力学)》的基本内容。 This is a survey and review about stochastic partial differential equations.This includes basic concepts,theory,methods and applications.More specifically,this article discusses Wiener process and It^ostochastic integral in Hilbert space,stochastic partial differential equations and their effective dynamics,rough paths and regularity structures.At the same time,an overview about the new book'Effective Dynamics of Stochastic Partial Differential Equations'(by Jinqiao Duan and Wei Wang)is provided.
出处 《数学建模及其应用》 2016年第2期1-8,共8页 Mathematical Modeling and Its Applications
基金 国家自然科学基金项目(11531006 11371367 11271290) 中央高校基本科研业务费专项资金(2014QT005)
关键词 随机偏微分方程 WIENER过程 Ito随机积分 有效动力学 正则结构 KPZ方程 stochastic partial differential equations Wiener process Itostochastic integral effective dynamics regularity structures KPZ equation
  • 相关文献

参考文献30

  • 1Horsthemke W,Lefever R.Noise-Induced Transitions. . 1984
  • 2Bj?rn Schmalfuss,Kening Lu,Jinqiao Duan.Invariant manifolds for stochastic partial differential equations. The Annals of Probability . 2003
  • 3Da Prato G,Zabczyk J.Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications . 1992
  • 4Kiyosi Ito.On a stochastic integral equation. Proceedings of the Japan Academy . 1946
  • 5Kiyosi It?.Stochastic integral. Proceedings of the Imperial Academy . 1944
  • 6Edward Allen.Derivation of Stochastic Partial Differential Equations. Stochastic Analysis and Applications . 2008
  • 7Igor Cialenco,Sergey V. Lototsky,Jan Pospi\v sil.Asymptotic properties of the maximum likelihood estimator for stochastic parabolic equations with additive fractional Brownian motion. Stoch. Dyn . 2009
  • 8Kardr M,Parisi G,Zhang YC.Dynamic scaling of growing interfaces. Physical Review . 1986
  • 9Hongbo Fu,Xianming Liu,Jinqiao Duan.Slow manifolds for multi-time-scale stochastic evolutionary systems. Commun. Math. Sci . 2013
  • 10Peter Imkeller,Adam Hugh Monahan.Conceptual Stochastic Climate Models. Stochastics and Dynamics . 2002

二级参考文献11

  • 1Sandra Cerrai,Mark Freidlin.Averaging principle for a class of stochastic reaction–diffusion equations[J]. Probability Theory and Related Fields . 2009 (1-2)
  • 2N. V. Krylov,B. L. Rozovskii.Stochastic evolution equations[J]. Journal of Soviet Mathematics . 1981 (4)
  • 3Chow P L.Stochastic Partial Differential Equations. . 2007
  • 4Fu H,Duan J.An averaging principle for two time-scale stochastic partial differential equations. Stochastics and Dynamics . 2010
  • 5Pazy A.Semigroups of Linear Operators and Applications to Partial Differential Equations. . 1985
  • 6Prevot C,Rockner M.A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics . 2007
  • 7Dembo A,Zeitouni O.Large Deviations Techniques and Applications. . 1998
  • 8Da Prato G,Zabczyk J.Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications . 1992
  • 9Clauss M,Breier G.Mechanisms ofAngiogenesis. . 2005
  • 10M. I. Freidlin,A. D. Wentzell.Random Perturbations of Dynamical Systems. . 1998

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部