期刊文献+

转炉炼钢动态过程预设定模型的混合建模与预报 被引量:15

Hybrid Modeling and Prediction of the Dynamic BOF Steelmaking Process
在线阅读 下载PDF
导出
摘要 准确预报转炉炼钢动态过程的补吹氧气用量和冷却剂添加量,对于提高终点命中率具有重要意义·采用机理模型及基于数据的自适应神经模糊推理系统混合建模方法建立了转炉炼钢动态过程预设定模型·用减法聚类,最小二乘法及梯度下降法辨识了T S模型并用该模型对机理模型进行补偿建模·对一座180t转炉的实测数据进行了仿真,仿真结果表明该方法是切实可行并有效的· A new framework was presented for the accurate modeling and prediction of the reblown oxygen and the added coolant in dynamic basicoxygenfurnace(BOF) steelmaking processes. The proposed method takes advantages of the modeling approach based on mechanism and uses adaptive neuralnetworkfuzzyinference system(ANFIS) to compensate for the BOF modeling uncertainties based on mechanism. In the ANFIS compensating model, the firstorder TakagiSugeno type fuzzy rules were employed and a hybrid algorithm combining the least square method(LSM) and the gradient descent method was adopted to obtain the model structure. The practical data of an 180t converter were simulated. The simulated results are close to the practical values. The method is practicable and effective.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第8期715-718,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60074019)
关键词 转炉 炼钢 混合建模 预设定模型 自适应神经模糊系统 T-S模型 减法聚类 basic oxygen furnace(BOF) steelmaking hybrid modeling presetting model adaptive neural network fuzzy inference system(ANFIS) T-S model subtractive clustering
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Dai Yunge, Li Wenxiu and Long Tengchun. Modem BOF Steelmaking [M]. Shenyang: Northeastern University Press, 1998
  • 2[2]Robertson K J, Balajee S R, Shearer J M, et al. The sublance dynamic control operation and its effect on the performance of the Inland Steel Company's No. 4 BOF shop [ A]. 1989 Steelmaking Conference Proceedings [C], Chicago, 1989, 159-166
  • 3[3]Ramaseder N, Pirklbauer W and Kalisch J. Slanted, sublancesysten for blowing process control [ J]. Metallurgical Plant and Technology,1993, 3:42-45
  • 4[4]Zhang Zengke. The Application of Fuzzy Mathematics in Automation Technology [M]. Beijing: Tsinghua University Press, 1997
  • 5[5]Zhu Jing. Fuzzy Control Principle and Its' Application [ M ]. Beijing: Mechanism Industry Press, 1995
  • 6[6]Zhang Huaguang. Fuzzy Identification and Fuzzy Adaptive Contrrol of Complex Systern [ M]. Shenyang: Northeastern University Press,1992
  • 7[7]Wang Peizhang. Theoay and Application of Fuzzy Set [ M]. Shanghai: Shanghai Science& Technology Press, 1983
  • 8[8]Shi Chunyi, Huang Changning and Wang Jiaqin. Araficial Intelligence Principle [M]. Beijing: Tsinghua University Press,1996

共引文献6

同被引文献74

引证文献15

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部