期刊文献+

中央空调水系统传感器在线故障诊断研究 被引量:3

Study on Online Fault Detection and Diagnosis of the Temperature Sensors in HVAC Chilled Water Systems
在线阅读 下载PDF
导出
摘要 针对中央空调冷媒水系统中的温度传感器,本文提出了一种基于数理统计的在线故障诊断方法,以实现在线检测并修正传感器的突发漂移故障。首先建立控制体的能量守恒方程式,然后利用其残差值判断是否出现传感器漂移故障,根据残差方程的数字特征运用数理统计的方法建立诊断方程组,通过采集有效的系统运行数据求解诊断方程组以修正传感器的故障。该方法在已经建立的中央空调水系统仿真器上进行了验证,结果表明它能够较快地解决传感器突发漂移故障,将其嵌入到楼宇智能控制系统中将使系统更可靠,更智能。 To detect and diagnose the mutable bias of the temperature sensors of the HVAC chilled water systems, an online FDD method based on statistics is presented in this paper. The energy conservation equations of the control volume are set up first, and then the residual of the relationships is obtained from the measurement data and used to detect the mutable bias of the sensor. The equations for fault diagnosis are set up based on the residual equations and the mathematical characters. The method is validated by simulation of chilled water systems. The results show that the method could detect and diagnosis the temperature sensors fault with mutable bias reliably and it could be used to enhance the performance of the building management system (BMS).
出处 《系统仿真学报》 CAS CSCD 2003年第7期1008-1011,共4页 Journal of System Simulation
关键词 中央空调控制系统 在线 故障诊断 传感器 仿真 HVAC control systems online FDD sensor simulation
  • 相关文献

参考文献9

  • 1李晓锋 晋欣桥 任海刚 等.变流量冷媒水系统及其控制系统的动态仿真[A]..2001上海市制冷学会年会论文集[C].上海,2001.156-160.
  • 2Ann B C, Mitchell J W, Mclntosh L B D. Model-Based Fault Detection and Diagnosis for Cooling Towers[J]. ASHRAE Transactions, 2001, 107(1): 839-846.
  • 3Dexter A L. Computer-Aided Evaluation of HVAC System Performance: The Practical Application of Fault Detection and Diagnosis Techniques in Real Buildings[C]. Proposal for A New ANNEX (version 2), 1996, IEA, Energy Conservation in Buildings and Community Systems Program.
  • 4Stylianou M, Nikanour D, Performance Monitoring, Fault Detection,and Diagnosis of Reciprocating Chillers[J]. ASHRAE Transactions,1996, 102(1): 615-627,.
  • 5Tzafestas S. Second Generation Expert Systems: Requirements,Architectures .and Prospects[A]. IFAC/IMACS[C]. Symposium on Fault Detection, Supervision and Safety for Technical Process,Baden-Baden, 1991.
  • 6Hemmelblau D M, Use of Artificial Neural Networks to Monitor Faults and for Troubleshooting in the Process Industries[C]. IFAC Symposium on on-line Fault Detection and Supervision in the Chemical Process Industries, Newark, 1992,.
  • 7Lee W Y, House J M, Shin D R. Fault Diagnosis and Temperature Sensor Recovery for An Air-Handling Unit[J], ASHRAE Transactions,1997, 103(1): 621-633.
  • 8Klein S A. TRNSYS: A Transient System Simulation Program,Version 13,1[Z], USA: University of Wisconsin-Madison, 1990.
  • 9Vachekov G, Matsuyama H. Identification of Fuzzy Rule Based System for Fault Diagnosis in Chemical Plants[C]. IFAC Symposiumon On-line Fault Detection and Supervision in the Chemical Process Industries, Newark, 1992.

共引文献2

同被引文献89

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部