期刊文献+

福建碧田Au-Ag-Cu矿床含金石英脉中磷灰石的阴极发光研究 被引量:4

CATHODOLUMINSCENCE STUDY OF APATITE IN GOLD-BEARING QUARTZ VEIN FROM BITAN Au-Ag-Cu DEPOSIT
在线阅读 下载PDF
导出
摘要 碧田Au Ag Cu矿床含金石英脉中的磷灰石在阴极射线激发下发明亮的黄绿色光 ,特征峰波长为 5 70~5 80nm。阴极发光 (CL)图像揭示了磷灰石的内部环带结构 ,不同环带微量和稀土元素含量具有明显的差异。发光带w(MnO) >0 .4%、n(Mn) /n(Fe) >2、n(Mn) /n(La+Ce) >4;Mn2 + 为CL的主要激发元素。磷灰石晶体结构中以LREE3 + +Si4+ =Ca2 + +P5+ 为主要的元素替代形式。磷灰石微量与稀土元素的分布特征表明 ,该矿床形成于近地表的低温热液体系 ,成矿流体在矿物共沉淀的晚期向富Si、Na方向演化。 Apatite crystals in gold-bearing quartz vein from the Bitan Au-Ag-Cu deposit, Fujian Province, display bright yellowish-green luminescence with the characteristic emission bands at 570-580 nm. Cathodoluminescence ( CL ) imaging revealed the concentric growth zoning of apatite crystals with variations in color and luminescence intensity, which is not detectable under petrographic microscope. The concentrations of trace elements and REE are evidenced by significant changes in different zones of individual apatite crystal. Because the bright yellowish-greenzones are rich in MnO(> 0.4 wt.%) with Mn/Fe ratios being larger than 2 and Mn/La+Ce ratios larger than 4, respectively. Mn 2+ is suggested to bethe principal activator for CL in apatite. The cation substitution in apatite is dominated by REE 3+ + Si 4+ = Ca 2+ + P 5+ . The distribution patterns of trace elements and REE in apatite crystals of this case have proved that the Bitan deposit originated from the epithermal system, and it is indicated that the late ore-forming solutions are enriched in Si and Na.
出处 《矿物学报》 CAS CSCD 北大核心 2003年第2期129-135,共7页 Acta Mineralogica Sinica
基金 国家重点基础研究发展规划项目 (G19990 43 2 0 9) 日本科技厅科技交流项目 ( 97 -FT0-1-5)
  • 相关文献

参考文献24

  • 1温志坚,杜乐天,刘正义.相山铀矿田磷灰石与富矿形成的关系[J].铀矿地质,1999,15(4):217-224. 被引量:33
  • 2黄铁心,刘晓东,张金成.碧田金矿──石英—冰长石型浅成低温热液贵金属矿床[J].地质地球化学,1996,24(6):1-4. 被引量:20
  • 3李小明,谭凯旋,龚文君,龚革联.利用磷灰石裂变径迹法研究金顶铅锌矿成矿时代[J].大地构造与成矿学,2000,24(3):283-286. 被引量:24
  • 4Tepper J H and Kuehner S T. Complex zoning in apatite from the Idaho batholith: A record of magma mixing and intracrystailine trace element diffusion[J]. American Mineralogist, 1999,84:581 - 595.
  • 5O' Reilly S Y and Griffin W L. Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle[J].Lithos,2000, 53: 217-232.
  • 6Roeder P L,MacArthur D and Ma X-P, et al. CCathodoluminescence and microprobe study of rare-earth elements in apalite[J]. American Mineralogist 1987,72:801-811.
  • 7Meurer W P and Natland J H. Apalite compositions from oceanic cumulates with implications for the evolution of mid-ocean ridge magmatic systems[J]. Journal of Volcanology and Geothermal Research, 2001, 110: 281-298.
  • 8Sha L K and Chappell B W.Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta, 1999, 63(22) : 3861 ~ 3881.
  • 9Knutson C, Peacor D R and Kelly W C. Luminescence, color and fission track zoning in apatite crystal of the Panasqueira tin-tungsten deposit,Beira-Baixa, Partugal[J]. American Mineralogist, 1985, 70:829 ~ 837.
  • 10Kempe U and Gotze J.Cathodoluminescence(CL)behaviour and crystal chemistry of apatite from rare-metal deposits[J].Mineralogical Magazine,2002, 66(1). 151-172.

二级参考文献7

共引文献74

同被引文献123

引证文献4

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部