期刊文献+

基于强化学习的多Agent系统 被引量:7

The Multi-Agent System Based on Reinforcement Learning
在线阅读 下载PDF
导出
摘要 Reinforcement learning allows agent that has no knowledge of an environment to cooperate more efficacious each other. This paper presents an approach for developing multi-agent reinforcement learning systems based on equation principle. The experiment shows agent can produces the desired behavior under all kinds of situation. Reinforcement learning allows agent that has no knowledge of an environment to cooperate more efficacious each other. This paper presents an approach for developing multi-agent reinforcement learning systems based on equation principle. The experiment shows agent can produces the desired behavior under all kinds of situation.
出处 《计算机科学》 CSCD 北大核心 2003年第4期16-18,共3页 Computer Science
基金 国防科工委"十五"攻关项目基金"智能机器人"
关键词 多AGENT系统 人工智能 强化学习 学习算法 Agent,Reinforcement learning,EDP,Equation principle
  • 相关文献

参考文献12

  • 1王文杰,田启家,史忠植.多主体系统中对其它主体的研究[J].计算机研究与发展,1998,35(11):971-974. 被引量:7
  • 2朱淼良,张新晖,吴春明,钱徽.自主机器人自组织结构IRASO的仿真研究[J].计算机研究与发展,1999,36(7):776-782. 被引量:6
  • 3Watkins C J C H. Learning from Delayed Rewards:[Ph.D.thesis]. Cambridge University, 1989.
  • 4Watkins C J C H. Dayan P. Technical not:Q-learning. Machine Learning, 1992,8:279~292.
  • 5Ohashi T ,et al. State transition rate based reinforcement learning Systems, Man, and Cybernetics. In: 2000 IEEE Intl. Cord.Volume: 1, 2000. 236~241.
  • 6Yamagnchi T,et al. Propagating learned behaviors from a virtual agent to a physical robot in reinforcement learnins, In..Proe. IEEE Int. Conf. on Evolutionary Computation, 1996. 855~859.
  • 7Yamagnchi T,et al. Reinforcement learning for a real robot in a real environment. In: European Conf. on Artificial Intelligence,Aug. 1996. 694~698.
  • 8Hailu G. Sommer G. Embedding knowledge in reinforcement·learning. In: Proc. 8^th Int. Conf. on Artificial Neural Networks.Sep. 1998. 1133~1138.
  • 9Huber M. A hybrid architecture for hierarchical reinforcement learning. In: Proc. IEEE Int. Conf. on Robotics & Automation,April 2000. 3290~3295.
  • 10Peng J, Bhanu B. Closed loop object recognition using reinforcement learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(2) : 139~154.

二级参考文献3

  • 1史忠植,高级人工智能,1997年
  • 2田启家,博士学位论文,1996年
  • 3Chun W H,SPIE.Proc Mobile Robot IX,1995年,180页

共引文献11

同被引文献45

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部