期刊文献+

Hybrid Field-Effect Transistors and Photodetectors Based on Organic Semiconductor and CsPbI_3 Perovskite Nanorods Bilayer Structure 被引量:5

Hybrid Field-Effect Transistors and Photodetectors Based on Organic Semiconductor and CsPbI_3 Perovskite Nanorods Bilayer Structure
在线阅读 下载PDF
导出
摘要 The outstanding performances of nanostructured allinorganic CsPbX_3(X = I, Br, Cl) perovskites in optoelectronic applications can be attributed to their unique combination of a suitable bandgap, high absorption coefficient, and long carrier lifetime, which are desirable for photodetectors. However, the photosensing performances of the CsPbI_3 nanomaterials are limited by their low charge-transport efficiency. In this study, a phototransistor with a bilayer structure of an organic semiconductor layer of 2,7-dioctyl [1] benzothieno[3,2-b] [1] benzothiophene and CsPbI_3 nanorod layer was fabricated. The high-quality CsPbI_3 nanorod layer obtained using a simple dip-coating method provided decent transistor performance of the hybrid transistor device.The perovskite layer efficiently absorbs light, while the organicsemiconductor layer acts as a transport channel for injected photogenerated carriers and provides gate modulation. The hybrid phototransistor exhibits high performance owing to the synergistic function of the photogating effect and field effect in the transistor,with a photoresponsivity as high as 4300 A W^(-1), ultra-high photosensitivity of 2.2 9 106, and excellent stability over 1 month.This study provides a strategy to combine the advantages of perovskite nanorods and organic semiconductors in fabrication of high-performance photodetectors. The outstanding performances of nanostructured allinorganic CsPbX_3(X = I, Br, Cl) perovskites in optoelectronic applications can be attributed to their unique combination of a suitable bandgap, high absorption coefficient, and long carrier lifetime, which are desirable for photodetectors. However, the photosensing performances of the CsPbI_3 nanomaterials are limited by their low charge-transport efficiency. In this study, a phototransistor with a bilayer structure of an organic semiconductor layer of 2,7-dioctyl [1] benzothieno[3,2-b] [1] benzothiophene and CsPbI_3 nanorod layer was fabricated. The high-quality CsPbI_3 nanorod layer obtained using a simple dip-coating method provided decent transistor performance of the hybrid transistor device.The perovskite layer efficiently absorbs light, while the organicsemiconductor layer acts as a transport channel for injected photogenerated carriers and provides gate modulation. The hybrid phototransistor exhibits high performance owing to the synergistic function of the photogating effect and field effect in the transistor,with a photoresponsivity as high as 4300 A W^(-1), ultra-high photosensitivity of 2.2 9 106, and excellent stability over 1 month.This study provides a strategy to combine the advantages of perovskite nanorods and organic semiconductors in fabrication of high-performance photodetectors.
出处 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期24-32,共9页 纳微快报(英文版)
基金 supported by the National Key Research and Development Program of China (2017YFA0103904) the National Nature Science Foundation of China (51741302 and 51603151) Science & Technology Foundation of Shanghai (17JC1404600) the Fundamental Research Funds for the Central Universities the support of College of Transportation Engineering,Tongji University’s Shanghai ‘‘Gaofeng’’ subject
关键词 PEROVSKITE PHOTOTRANSISTOR Nanorod Organic semiconductor Photogating effect Perovskite Phototransistor Nanorod Organic semiconductor Photogating effect
  • 相关文献

同被引文献40

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部