期刊文献+

板弯曲断裂计算的边界配置解法 被引量:7

Fracture Calculation of Bending Plates by Boundary Collocation Method
在线阅读 下载PDF
导出
摘要  采用复变函数理论和边界配置方法,分析计算了Kirchhoff板的弯曲断裂问题· 假设了位移及内力的复变函数式,它们能满足一系列的基本方程和支配条件,例如域内的平衡方程、裂纹表面的边界条件、裂纹尖端的应力奇异性质· 这样,仅板边界的边界条件需要考虑· 它们可用边界配置法和最小二乘法近似满足· 对不同边界条件和载荷情形进行了分析计算· 数值算例表明,本文方法精度较高,计算量小,是一种有效的半解析。 Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it is only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time. This is an effective semi_analytical and semi_numerical method.
出处 《应用数学和力学》 EI CSCD 北大核心 2003年第6期605-610,共6页 Applied Mathematics and Mechanics
关键词 Kirchhoff板 断裂 边界配置解法 复变函数 应力强度因子 Kirchhoff plate fracture boundary collocation method complex variables function stress intensity factors
  • 相关文献

参考文献10

  • 1柳春图 李英治.平板弯曲断裂问题的研究进展[J].力学进展,1982,12(4):346-359.
  • 2中国航空研究院.应力强度因子手册(增订版)[M].北京:科学出版社,2000..
  • 3Murakami Y. Stress Intensity Factor Handbook[M]. Vol 2. New York: Pergamon Press, 1987,1249-1341.
  • 4Sih G C,Paris P C,Erdogan F. Crack-tip stress-intensity factors for plane extension and plate bending problems[J]. Journal of Applied Mechanics, 1962,29(2) :306-312.
  • 5Barsoum R S. A degenerate solid element for linear fracture analysis of plate bending and general shell[J]. International Journal for Numerical Methods in Engineenng , 1976,10(3) :551-564.
  • 6Rhee H C, Atluri S N. Hybrid stress finite element analysis of bending of a plate with a through flaw[ J ]. International Journal for Numerical Methods in Engineering, 1982,18 (2) : 259-271.
  • 7Jiang C P, Cheung Y K.A special bending crack tip finite element[J]. International Journal of Fractare, 1995,71 ( 1 ) : 57-69.
  • 8WANG Yuan-han. The elastic and elasto-plastic fracture analysis by method of weighted residuals and elasto-viscoplasticity[ D]. Ph D Thesis. Hong Kong: The University of Hong Kong, 1988,13-200.
  • 9Muskhelishvili N I. Some Basic Problems of Mathematical Theory of Elasticity [ M ]. The Netherlands, Leyden: Noordhoff, 1975.
  • 10Savin G N. Stress Concentration Around Holes[M]. Oxford: Pergamon Press, 1961.

共引文献2

同被引文献39

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部