期刊文献+

基于最小p-范数的宽度学习系统 被引量:13

Least p-Norm Based Broad Learning System
在线阅读 下载PDF
导出
摘要 在宽度学习系统的基础上,以误差矢量的p-范数为损失函数,结合固定点迭代策略,提出基于最小p-范数的宽度学习系统.通过灵活设置p的取值(p≥1),提出的最小p-范数宽度学习系统能较好应对不同噪声的干扰,实现对不确定数据的建模任务.数值实验表明,在高斯、均匀、脉冲噪声干扰环境下,文中系统均能保持良好性能.将该系统应用于脑电图分类任务,在大多数被试上都能取得较高的分类精度. Based on the broad learning system( BLS),a least p-norm based BLS( LP-BLS) is proposed,and it takes the p-norm of error vector as loss function and combines the fixed-point iteration strategy. With the proposed LP-BLS,the interferences from different noises can be well dealt with by flexibly setting the value of p( p≥1),so that the modeling task of unknown data can be better completed.Numerical experiments show that the good performance of the proposed method can always be maintained with Gaussian noise, uniform noise and impulse noise. Finally, the system is applied to electroencephalogram( EEG) classification task and achieves a higher classification accuracy on most subjects.
作者 郑云飞 陈霸东 ZHENG Yunfei;CHEN Badong(Institute of Artificial Intelligence and Robotics,School of Electronic and Information Engineering,Xi’an Jiaotong University,Xi'an 710049)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第1期51-57,共7页 Pattern Recognition and Artificial Intelligence
基金 国家重点基础研究发展计划(973计划)项目(No.2015CB351703) 国家自然科学基金项目(No.91648208)资助~~
关键词 宽度学习系统 最小p-范数 固定点迭代 脑电图分类 Broad Learning System Least p-Norm Fixed-Point Iteration Electroencephalogram(EEG) Classification
作者简介 郑云飞,博士研究生,主要研究方向为机器学习、脑机接口.E-mail:zhengyf@stu.xjtu.edu.cn;通讯作者:陈霸东,博士,教授,主要研究方向为信号处理、机器学习、脑机接口.E-mail:chenbd@mail.xjtu.edu.cn.
  • 相关文献

参考文献4

二级参考文献23

  • 1邱天爽,杨志春,李小兵,陈艳霞.α稳定分布下的加权平均最小p-范数算法[J].电子与信息学报,2007,29(2):410-413. 被引量:15
  • 2Johansson G. Visual Perception of Biological Motion and a Model for Its Analysis. Perception and Psychophysics, 1973, 14(2) :201-211.
  • 3Barclay C, Cutting J, Kozlowski L. Temporal and Spatial Factors in Gait Perception That Influence Gender Recognition. Perception and Psychophysics, 1978, 23(2): 145-152.
  • 4Cutting J E, Kozlowski L T. Recognizing Friends by Their Walk: Gait Perception without Familiarity Cues. Bulletin of the Psychonomic Society, 1977, 9(5): 353-356.
  • 5BenAbdelkader C, Cutle R, Davis L. Motion-Based Recognition of People in EigenGait Space. In:Proc of the IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA, 2002, 254-259.
  • 6Hayfron-Acquah J B, Nixon M S, Carter J N. Human Identification by Spatio-Temporal Symmetry. In: Proc of the International Conference on Pattern Recognition. Quebec, Canada,2002, 632-635.
  • 7Lee L, Grimson W E L. Gait Analysis for Recognition and Classification. In: Proc of the IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA,2002, 148-155.
  • 8Collins R T, Gross R, Shi J B. Silhouette-Based Human Identification from Body Shape and Gait. In: Proc of the IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA, 2002, 351-356.
  • 9Wang L, Ning H, Hu W, Tan T. Gait Recognition Based on Procrustes Shape Analysis. In: Proc of the 9th IEEE International Conference on Image Processing. Rochester, USA, 2002,433-436.
  • 10Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs Fisherfaces: Recognition using Class Specific Linear Projection.IEEE Trans on Pattern Analysis and Machine Intelligence,1997, 19(7),711-720.

共引文献30

同被引文献88

引证文献13

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部