期刊文献+

遗传算法在资源选择上的应用 被引量:4

An Application of Genetic Algorithm in Resource Selection
在线阅读 下载PDF
导出
摘要 在网格环境下,资源选择的策略是决定应用程序性能的关键因素之一。目前的资源选择一般采用贪心算法,而在资源选择中引入遗传算法是一种新的尝试,其目的是提高资源选择的效率。这种资源选择首先产生若干个网格环境中可能的配置(第一代),预测应用程序在每种配置下的表现。再以此为依据,应用多种交叉和变异策略,产生下一代的配置,直到得到满意的结果。对所选应用程序的两种不同规模的测试表明,在相同或更短的时间内,基于遗传算法的资源选择策略比贪心算法的资源选择策略得到更好的结果。 In environment of grid, the strategy of resource selection is one of the key fac tors determining performance of application.At present, greedy algorithm is usua lly used as the strategy of resource selection. While introducing genetic algori thm into the resource selection is a new attempt for efficiency promotion.In thi s resource selection, several available configurations(first generation) are gen erated at first, and performance of application is predicted in each configurati on. Then, according to the prediction, this generation will evolve to the next o ne by crossover and mutation in multiway, till the satisfy result is got.The exp erimentation of two scales of the same application present that, by the same or smaller time cost, the strategy based on genetic algorithm produces better resul t than the one based on greedy algorithm does.
作者 何炎祥 陈青
出处 《计算机应用》 CSCD 北大核心 2003年第5期20-23,共4页 journal of Computer Applications
关键词 资源选择 遗传算法 网格计算 resouce selection genetic algorthm grid computing
  • 相关文献

参考文献5

  • 1Angulo D, Foster I, Liu C, et al. Design and Evaluation of a Resource Selection Framework for Grid Applications[ R]. Edinburgh,Scotland : Proceedings of IEEE International Symposium on High Performance Distributed Computing ( HPDC -11), July 2002.
  • 2Foster I, Kesselman C. TheGrid: Blueprint for a New Computing Infrastructure[ M]. San Francisco, US: Morgan Kaufmann, 1999.259-278.
  • 3Foster I. The Grid: A New Infrastructure for 21st Century Science[ J]. Physics Today, 2002, 55(2) : 42 -47.
  • 4Ripeanu M, Iamnitchi A, Foster I. Performance Predictions for a Numerical Relativity Package in Grid Environments[ J]. International Journal of High Performance Computing Applications, 2001, 15(4).
  • 5Ripcanu M, Iamnitchi A, Foster I. Cactus Application: Peafonnance Predictions in Grid Environments[ R]. Manchcster, UK: EuroPar2001, August 2001.

同被引文献33

  • 1梁俊斌,翁鸣,苏德富.基于混合并行遗传算法的网格资源分配策略[J].微电子学与计算机,2004,21(7):102-105. 被引量:11
  • 2陈培军,曾建潮.应用思维进化计算求解顶点着色问题[J].太原重型机械学院学报,2004,25(3):165-169. 被引量:1
  • 3孙承意,周秀玲,王皖贞.思维进化计算的描述与研究成果综述[J].通讯和计算机(中英文版),2004,1(1):13-21. 被引量:6
  • 4Rajkumar Buyya, Manzur Murshed. GridSim: a toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing,CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper.2002;14:1175-1220 (DOI: 10. 1002/cpe.710)
  • 5Thomas Stutzle,Holger H Hoos et al. MAX-MIN ant system.Future Generation Computer System,2000,16(8):889~914
  • 6Angulo D, Foster I, Liu C, et al . Design and Evaluation of a Resource Selection Framework for Grid Applications [R].Edinburgh, Scotland:Proceedings of IEEE International Symposiumon High Performance Distributed Computing(HPDC-11), July 2002.
  • 7潘正君,康立山,陈毓屏,演化计算,清华大学出版社,1998
  • 8Angulo D, Foster I, Liu C et al. Design and Evaluation of a Resource Selection Framework for Grid Applications [R]. Edinburgh, Scotland.. Proceedings of IEEE International Symposiumon High Performance Distributed Computing ( HPDC-11 ), 2002.
  • 9Ripeanu M, Iamnitchi A, Foster I. Performance Predictions for a Numerical Relativity Package in Grid Environments[J]. International Journal of High Performance Computing Applications, 2001, 15 (4) 12-15.
  • 10Foster I. The Grid: A New Infrastructure for 21st Century Science[J]. Physics Today, 2002(2) : 42-47.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部