期刊文献+

大型事务数据库中的一种快速的规则挖掘算法 被引量:4

A Fast Algorithm on Association Rules in Large Transaction Databases
在线阅读 下载PDF
导出
摘要 1 引言数据挖掘(Data Mining),也称为数据库中知识发现KDD,是指发掘隐藏在堆积如山的数据中的真知灼见,这基本上正在变成一种商业上非做不可的事情。关联规则(As-sociation Rules)是数据挖掘的重要研究内容,目前的绝大部分关联规则挖掘算法一般都分为两个阶段:①频繁项目集的发现;②规则的产生。算法的计算工作量主要集中在第一阶段上,因此,如何快速确定频繁项目集是算法效率的关键,在这方面已有许多工作与成果。但总的来讲,许多研究都是在Apriori算法或其派生算法的基础上进行的。这些算法或多或少存在如下两个问题:①算法必须耗费大量的时间处理规模巨大的候选项目集; Discovery of association rules is an important data-mining task. Several algorithms have been proposed to solve this problem-But most of them are based on the Apriori algorithm that requires repeated passes over the large transaction databases. In this paper,the authors propose a new database schema and present a relevant algorithm. Comparing with Apriori and Apriori-like algorithms, the authors also offer some experiments to show that the new algorithm is more efficient.
出处 《计算机科学》 CSCD 北大核心 2002年第10期59-60,69,共3页 Computer Science
基金 国家自然科学基金(项目编号79970092)
关键词 大型事务数据库 规则挖掘算法 数据挖掘 知识发现 Data mining,Association rules,Transaction databases
  • 相关文献

参考文献6

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the 20th Int. Conf. on VLDB, Santiago,Chile, 1994 . 487~499
  • 2Han J.Kamber M.Data Mining:Concepts and Techniques.北京:高等教育出版社,2001
  • 3范明 等.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.8.
  • 4Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proc. 20th Int. Conf. on VLDB, Santiago, Chile,1994. 487~499
  • 5Houtsma M,Swami A. Set-oriented mining for association rules in relational databases. In:Yu P,Chen A,eds. Proc. of the Int. Conf.on Data Engineering,Los Alamitos, CA: IEEE Computer Society Press, 1995.25~ 33
  • 6Savasere A,Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proc 21th Int. Conf. on VLDB,Zurich ,Switzerland, 1995. 432~444

共引文献10

同被引文献28

  • 1宋余庆,王立军,吕颖,谢从华.基于分类树的高效关联规则挖掘算法[J].江苏大学学报(自然科学版),2006,27(1):51-54. 被引量:6
  • 2朱玉全,宋余庆,杨鹤标,陈健美.基于频繁模式树的关联分类规则挖掘算法[J].江苏大学学报(自然科学版),2006,27(3):262-265. 被引量:2
  • 3高宏宾,潘谷,黄义明.基于频繁项集特性的Apriori算法的改进[J].计算机工程与设计,2007,28(10):2273-2275. 被引量:25
  • 4HanJiawei KamberM.数据挖掘概念与技术[M].机械工业出版社,2002,5..
  • 5Agrawal R,Srikant R.Mining sequential patterns[C]∥Proceedings of the 11th International Conference on Data Engineering.Washington DC:IEEE Computer Society Press,1995:3-14.
  • 6Zaki M J.SPADE:an efficient algorithm for mining frequent sequences[J].Machine Learning,2001,42(1/2):31-60.
  • 7Pei J,Han J W.PrefixSpan:mining sequential patterns efficiently by prefix-projected pattern growth[C]∥Proceedings of 17th International Conference on Data Engineering.Heidelberg,Germany,2001:215-226.
  • 8Masseglia F,Poncelet P,Teisseure M.Incremental mining of sequential patterns in large database[J].Data and Knowledge Engineering,2003,46(1):97-121.
  • 9Lin MY,Lee SY.Incremental update on sequential patterns in large databases[C]∥Proceedings of 10th IEEE International Conference on Tools with Artificial Intelligence.Taipei:[s.n.],2001:24-31.
  • 10A1-Betar M A, Doush I A, Khader A T, et al. Novel selectionshemes for harmony search [ J . Applied Mathematicsand Computation, 2012, 218 (10) : 6095- 6117.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部