期刊文献+

关于矩阵张量积数值半径的两个问题 被引量:2

Two problem of the numerical radius on tensor power of matrix
在线阅读 下载PDF
导出
摘要 借助矩阵张量积和矩阵数值半径的性质,证明了不等式r(A_(1)…A_(k))≥k_(i)=1r(A_(i))和等式r(A■B)=r(B■A),其中A_(1),…,Ak,A,B∈L(U).同时,举例说明了不等式r(k■A)≤r^(k)(A)不成立,而当A_(1),…,A_(k)为正规阵时,有r(A_(1)■…■A_(k))=ks=1r(A_(s)). This paper proves that for any n×n matrices A_(1),...,A_(k)∈L(U)we have r(A_(1)...A_(k))≥ki=1r(A_(i));and for any two n×n matrices A,B∈L(U)we have r(A■B)=r(B■A);where r(A)denotes the numerical radius of A.And it shows that the inequalities r(A■B)≤r(A)r(B)and r(A■A)≤r2(A)do not hold in general,particularly,r(A_(1)■...■A_(k))=ks=1r(A_(S))for normal matrices A_(1),A_(2),...,A_(k).
作者 刘修生 LIU Xiu-sheng(Department of Fundamental Courses,Huangshi College,Huangshi,Hubei 435003;College of Mathematics and Statistics,Wuhan University,Wuhan 430072)
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第1期14-16,共3页 Journal of Central China Normal University:Natural Sciences
基金 国家重点基础研究发展规划资助项目 湖北省教育厅重大项目资助(2001Z06003).
关键词 矩阵的数值半径 矩阵和向量的张量积 向量内积 矩阵和向量范数 numerical radius of matrix tensor product of matrix and vector inner product operator norm of matrix and vector
作者简介 刘修生(196O-),男,湖北大治人,副教授.主要从事代数与数论研究.
  • 相关文献

同被引文献10

  • 1王伯英.多重线形代数[M].北京:北京师范大学出版社,1985.
  • 2[1]程云鹏.矩阵论[M]. 西安:西北大学出版社,1998
  • 3GoldberyM and Tadmor E. On the numerical radius and its applications[J], lin Alg Appl, 1982(42): 263-284.
  • 4Goldbery M and Straus E G. Norm properties of c-numerical radius[J], lin.Alg Appl, 1979(24): 113-131.
  • 5LI C K and Zaharia A. Decomposible numerical range on orthonrmal decomposible tensors[J]. lin.Alg Appl, 2000(308): 139-152.
  • 6Friedland S and Zenger C. All spectral dominant norms are stable[J], lin Alg Appl, 1984(58): 97-107.
  • 7Bonsall F F and Duncan J. Numerical Ranges[M]. Vols.I.II, Cambridge U.P., London, 1971, 1973.
  • 8Horm R A and Johnson C R. Matrix Analysis[M]. Cambridge University Press, Cambridge, 1985.
  • 9Friedland S. Variation of tensor power and spectra[J]. Linear. Multilin.Algebra, 1982(12): 81-98.
  • 10Li C K. The decomposable numerical radius and numerical radius of a compound matrix[J]. Linear Algebra Appl, 1986(76): 45-58.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部