期刊文献+

基于大数据分析的船舶航行安全自动评估系统设计 被引量:6

Design of ship navigation safety automatic Evaluation system based on big data analysis
在线阅读 下载PDF
导出
摘要 为了提高船舶航行的安全性,构建船舶航行安全自动评估系统,提出基于大数据分析的船舶航行安全自动评估系统设计方法。采用航向陀螺仪、三轴磁力计等敏感传感器进行船舶航行姿态参数采集,根据采集的船舶航行姿态数据进行大数据特征重组,建立船舶航行姿态参量大数据库,设计数据访问调度和参数融合算法,进行船舶航行安全大数据信息调度和特征分析,进而实现船舶航行安全自动评估。在嵌入式ARM环境下进行系统的软件开发,实现系统优化设计。仿真结果表明,采用该系统进行船舶航行安全自动评估的准确性较好,船舶航行安全信息大数据访问调度的实时性较高。 In order to improve the safety of ship navigation, the automatic evaluation system of ship navigation safety is constructed, and the design method of automatic evaluation system of ship navigation safety based on big data analysis is put forward. The heading gyroscope is adopted. The sensitive sensors such as triaxial magnetometer are used to collect ship navigation attitude parameters. According to the collected ship navigation attitude data big data characteristics are reorganized and a large database of ship navigation attitude parameters is established. Data access scheduling and parameter fusion algorithms are designed for ship navigation safety big data information scheduling and feature analysis. Finally, the automatic evaluation of ship navigation safety is realized. The software development of the system is carried out under the embedded ARM environment, and the system optimization design is realized. The simulation results show that. The accuracy of automatic evaluation of ship navigation safety by this system is good, and the real-time performance of big data access scheduling of ship navigation safety information is high.
出处 《舰船科学技术》 北大核心 2018年第3X期31-33,共3页 Ship Science and Technology
关键词 大数据分析 船舶 航行安全 自动评估系统 big data analysis ship navigation safety automatic assessment system
  • 相关文献

参考文献4

二级参考文献34

  • 1刘浩,戴居丰.基于系统分割的保留非线性快速P-Q分解状态估计法[J].电网技术,2005,29(12):72-76. 被引量:12
  • 2李洪双,吕震宙,岳珠峰.结构可靠性分析的支持向量机方法[J].应用数学和力学,2006,27(10):1135-1143. 被引量:28
  • 3Xue Gui-Rong, Xing Di-Kan, Yang Qiang, et al. Deep classification in large- scale text hierarchies/ /Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore, 2008: 619-626.
  • 4Dh H, Choi y, Myaeng S. Combining global and local information for enhanced deep classification/ /Proceedings of the 25th ACM SIGAPP Symposium on Applied Computing. Sierre , Switzerland, 2010: 1760-1767.
  • 5Malik H. Improving hierarchical SVMs by hierarchy flattening and lazy classification/ /Proceedings of the Large-Scale Hierarchical Classification Workshop in 32nd European Conference on Information Retrial. Milton Keynes, UK, 2010: 1-12.
  • 6Han Xiaogang , Liu Iunfa , Shen Zhiqi , et al. An optimized K -nearest neighbor algorithm for large scale hierarchical text classification/ /Proceedings of the 2011 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Athens, Greece, 2011: 2-12.
  • 7Xing Di-Kan , Xue Gui-Rong, Yang Qiang , et al. Deep classifier: Automatically categorizing search results into largescale hierarchies/ /Proceedings of the 1 st ACM International Conference On Web Search and Data Mining. New York, USA, 2008: 139-148.
  • 8Malik H, Fradkin D, Moerchen F. Single pass text classification by direct feature weighting. Knowledge and Information Systems, 2011, 28(1): 79-98.
  • 9Guan Hu , Zhou Iingyu , Guo Minyi. A class-feature-centroid classifier for text categorization/ /Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009: 201-210.
  • 10Ceci M, Malerba D. Classifying web documents in a hierarchy of categories: A comprehensive study. Journal of Intelligent Information Systems, 2007, 28(1): 37-78.

共引文献81

同被引文献29

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部