期刊文献+

基于Kruppa方程的相机分步自标定方法

Step-by-step self-calibration algorithm of digital camera based on Kruppa equations
在线阅读 下载PDF
导出
摘要 提出一种运动变焦相机分步自标定的方法,即事先标定相机的纵横比和主点,在假设像素为矩形及主点为图像中心的情况下,基于Kruppa方程线性求解焦距.算法中只需输入基础矩阵,不必预先进行任何类型的投影阵分解或投影束校正.线性求解焦距避免了非线性法的不稳定性.实际数值实验表明该方法简单实用. A novel technique for self\|calibration of cameras with varying focal length is introduced. The aspect ratio and principal point can be estimated beforehand because they are unchangable during camera′s movements, provided that zero\|skew and the principal point are at the center of the image, an linear solution is derived from using the Kruppa equations. The input of the algorithm is a set of fundamental matrices, and it is not necessary to perform any projective factorization or projective bundle adjustment. An step\|by\|step linear algorithm which can avoid unstability of nonlinear problem has been developed. Experiments with real data synthetized have shown that the technique is simple and useful.
出处 《大连理工大学学报》 CAS CSCD 北大核心 2003年第1期82-85,共4页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(59805001).
关键词 分步自标定方法 基础矩阵 KRUPPA方程 摄影测量学 焦距 变焦相机 计算机视觉 fundamental matrix/Kruppa equations self\|calibration
  • 相关文献

参考文献13

  • 1[1]MAYBANK S, FAUGERAS O D. A theory of self-calibration of a moving camera [J]. Int J Comput Vision,1992,8(2):123-151.
  • 2[2]LUONG Q T, FAUGERAS O. Self-calibration of moving camera from point correspondences and fundamental matrices [J]. Int J Comput Vision, 1997, 22(3):261-289.
  • 3[3]LOURAKIS M A, DERICHE R. Camera self-calibration using the singular value decomposition of the fundamental matrix [A]. Proceedings of the 4th Asian Conference on Computer Vision [C]. Taipei:[s n], 2000.
  • 4[4]HUANG T S, FAUGERAS O. Some properties of the e matrix in two view motion estimation [J]. IEEE Trans PAMI, 1989,11(12):1310-1312.
  • 5[5]MENDONCA P R S, CIPOLLA R. A simple technique for self-calibration [A]. Proceedings of the Conference Computer Vision and Pattern Recognition [C]. Colorado: Fort Collins, 1999.
  • 6[6]TRIVEDI H P. Can multiple views make up for lack of camera registration [J]. Image Vision Comput, 1988,6(1):29-32.
  • 7[7]TRIGGS B. Autocalibration and the absolute quadric [A]. Proceedings of the Conference Computer Vision and Pattern Recognition [C]. Puerto Rico:[s n], 1997.
  • 8[8]POLLEFEYS M, KOCH R, VAN GOOL L. Self-calibration and metric reconstruction in spite of varying and unknown intrinsic camera parameters [J]. Int J Comput Vision, 1999, 32(1):7-25.
  • 9[9]FAUGERAS O D, LUONG Q T, MAYBANK S J. Camera self-calibration: Theory and experiments [A]. Proceedings of the 2nd European Conference on Computer Vision, Lecture Notes in Computer Science [C].Italy: Springer-Verlag, 1992.
  • 10[10]HARTLEY R. Euclidean reconstruction from uncalibrated views [A]. Applications of Invariance in Computer Vision, Lecture Notes in Computer Science [C]. Italy:Springer-Verlag, 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部