摘要
设f(z)在|z|<1解析,在|z|≤1连续,在|z|=1有界变差,本文得到了复平面上f(z)的基于单位根的(0,1,…,q)Hermitc—Fcjcr插值多项式在|z|≤1上一致收敛于f(z)的结论。对于(0,1,…,q)Hcrmitc插值多项式,也有类似的结论。
Let f(z) be analytie in |z|<1, continous on |z|≤1 and of bounded variation on |z|=1.In this paper, we obtain that the(0,1,…q) Hermite-Fejer interpolating polynomials with nodes at roots of unity of f(z) converge to f(z) uniformly on |z|≤1. Similar convergence of (0,1,…,q) Hermite interpolating polynomials are obtained also.
出处
《工程数学学报》
CSCD
1992年第4期85-92,共8页
Chinese Journal of Engineering Mathematics